Protein-repairing methionine sulfoxide reductases in photosynthetic organisms: gene organization, reduction mechanisms, and physiological roles.

Mol Plant

CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Bâtiment 161, SBVME, CEA-Cadarache, 13108 Saint-Paul-lez-Durance, Cedex, France.

Published: March 2009

Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reductases (MSRs), A and B, specific to the S- and R-diastereomers of MetSO, respectively. MSR genes are found in most organisms from bacteria to human. In the current review, we first compare the organization of the MSR gene families in photosynthetic organisms from cyanobacteria to higher plants. The analysis reveals that MSRs constitute complex families in higher plants, bryophytes, and algae compared to cyanobacteria and all non-photosynthetic organisms. We also perform a classification, based on gene number and structure, position of redox-active cysteines and predicted sub-cellular localization. The various catalytic mechanisms and potential physiological electron donors involved in the regeneration of MSR activity are then described. Data available from higher plants reveal that MSRs fulfill an essential physiological function during environmental constraints through a role in protein repair and in protection against oxidative damage. Taking into consideration the expression patterns of MSR genes in plants and the known roles of these genes in non-photosynthetic cells, other functions of MSRs are discussed during specific developmental stages and ageing in photosynthetic organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mp/ssn067DOI Listing

Publication Analysis

Top Keywords

methionine sulfoxide
12
photosynthetic organisms
12
higher plants
12
sulfoxide reductases
8
msr genes
8
organisms
5
protein-repairing methionine
4
reductases photosynthetic
4
organisms gene
4
gene organization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!