Protein tyrosine phosphatase 1B inhibitors were reported to have anti-diabetic properties and hence this enzyme has become interesting drug target in the recent time. Huge amount of data is available in public domain about the PTP1B inhibitors in the form of X-ray structures. This study is an attempt to transform this data into useful knowledge which can be directly used to design more effective protein tyrosine phosphatase inhibitors. In this study, we have built quantitative models for activity of co-crystallized protein tyrosine phosphatase inhibitors using two new approaches developed in our group, i.e. receptor-ligand interaction and Structure-based compound optimization, prioritization and evolution based on receptor-ligand interaction descriptors and residue-wise interaction energies as descriptors, respectively. These models have given insights into the receptor-ligand interactions essential for modulating the activity of PTP1B inhibitors. An external validation set of 22 molecules was used to test predictive power of these models on external set molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1747-0285.2009.00894.x | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, generally due to defects of insulin action or secretion. Inhibition of α-glucosidase, an enzyme responsible for carbohydrate degradation, is a promising strategy for managing postprandial hyperglycemia in diabetic patients. In this study, two new C-linked diarylheptanoid dimers, kaemgalanganols A (1) and B (2), were isolated from K.
View Article and Find Full Text PDFInt J Endocrinol
December 2024
Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Medicine, Guizhou University, Guiyang 550025, China; NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China. Electronic address:
Introduction: Depression negatively impacts the prognosis of various cancers, including lung cancer, by influencing antitumor immune responses and impairing immune cell function. Antidepressants may modulate the tumor immune microenvironment, enhancing immunotherapy efficacy. However, the specific mechanisms remain unclear.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
KU Leuven - University of Leuven, Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, O&N2, PB 923, Herestraat 49 3000 Leuven, Belgium. Electronic address:
Natural products (NPs) play an important role in drug discovery and drug development due to their diverse chemical properties and biological activities. In the present work, an on-line capillary electrophoresis (CE) method was developed and applied to screen protein tyrosine phosphatase 1B (PTP1B) inhibitors in NPs. As a generic technique, transverse diffusion of laminar flow profiles (TDLFP) was utilized to mix all reactants in the capillary for on-line enzymatic reaction.
View Article and Find Full Text PDFBioorg Chem
January 2025
School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, PR China; Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
We have successfully designed and assembled a 66-member library of protein tyrosine phosphatases (PTP) inhibitor candidates using α-ketoacid-hydroxylamine (KAHA) ligation. Subsequent in situ enzymatic screening revealed a potent hit (IC = 1.67 μM) against PTP1B, which displayed 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!