Gene vfr previously described only in Pseudomonas aeruginosa was cloned, identified, and sequenced in cells of Pseudomonas chlororaphis 449; its localization in the chromosome was determined. Amino acid sequence of the protein encoded by gene vfr in P. chlororaphis 449 was shown to have a 83% identity with the Vfr protein of P. aeruginosa PAO1 and a 63% identity with the CRP protein of Escherichia coli. Amino acid residues that ensure the most important structural properties of the CRP protein, i.e., its binding to cAMP, RNA polymerase, and DNA, were identical or highly conserved in Vfr proteins of P. aeruginosa and P. chlororaphis 449. The cloned vfr gene of P. chlororaphis 449 was partially complementary to mutation at crp gene in cells of E. coli AM306 enhancing ten times synthesis of CRP protein-dependent beta-galactosidase. Unlike P. aeruginosa, the Vfr protein in cells of P. chlororaphis 449 does not participate in the regulation of synthesis of N-acyl-homoserine lactones.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chlororaphis 449
20
gene vfr
12
pseudomonas chlororaphis
8
amino acid
8
vfr protein
8
crp protein
8
vfr
7
chlororaphis
6
gene
5
0
5

Similar Publications

The use of biocidal agents is a common practice for protection against biofouling in biomass-rich environments. In this paper, oligohexamethyleneguanidine (OHMG) polymer, known for its biocidal properties, was further modified with para-aminosalicylic acid (PAS) to enhance its properties against microorganisms coated with a lipid membrane. The structure of the product was confirmed by H NMR, C NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Volatile compounds emitted by bacteria can play a significant role in interacting with microorganisms, plants, and other organisms. In this work, we studied the effect of total gaseous mixtures of organic as well as inorganic volatile compounds (VCs) and individual pure volatile organic compounds (VOCs: ketones 2-nonanone, 2-heptanone, 2-undecanone, a sulfur-containing compound dimethyl disulfide) synthesized by the rhizosphere Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270 strains, the soil-borne strain P. fluorescens B-4117, and the spoiled meat isolate S.

View Article and Find Full Text PDF

Many volatile compounds secreted by bacteria play an important role in the interactions of microorganisms, can inhibit the growth of phytopathogenic bacteria and fungi, can suppress or stimulate plant growth and serve as infochemicals presenting a new type of interspecies communication. In this work, we investigated the effect of total pools of volatile substances and individual volatile organic compounds (VOCs) synthesized by the rhizosphere bacteria Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270, the soil-borne strain P. fluorescens B-4117 and the spoiled meat isolate S.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how volatile organic compounds (VOCs) from certain bacteria can impact biofilm formation in Agrobacterium tumefaciens, which causes crown-gall disease in plants.
  • Through dual culture assays, it was found that the VOCs from Pseudomonas and Serratia strains not only suppressed biofilm formation but also killed established A. tumefaciens cells.
  • Specific compounds, like certain ketones and dimethyl disulfide (DMDS), show potential as natural protectants for plants against these harmful bacteria due to their ability to inhibit biofilm-related virulence.
View Article and Find Full Text PDF

The mutants of Pseudomonas chlororaphis 449 with completely or partially suppressed accumulation of N-acyl homoserine lactones exhibited the absence or a pronounced decrease of their capacity for stimulation of biofilm growth in the presence of azithromycin. Biofilms of the wild type strain preformed in the presence of the stimulatory azithromycin concentrations exhibited more intense staining with a polysaccharide-specific dye 1,9-dimethyl methylene blue (DMMB) and were more resistant to heat shock. These findings indicate accumulation of the structural matrix polysaccharides, which play a protective role under the conditions of thermal shock.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!