A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integrated exposure modeling: a model using GIS and GLM. | LitMetric

Integrated exposure modeling: a model using GIS and GLM.

Stat Med

Division of Biostatistics, Department of Epidemiology and Public Health, Yale School of Medicine, New Haven, CT 06520, USA.

Published: January 2010

Traffic exhaust is a source of air contaminants that have adverse health effects. Quantification of traffic as an exposure variable is complicated by aerosol dispersion related to variation in layout of roads, traffic density, meteorology, and topography. A statistical model is presented that uses Geographic Information Systems (GIS) technology to incorporate variables into a generalized linear model that estimates distribution of traffic-related pollution. Exposure from a source is expressed as an integral of a function proportional to average daily traffic and a nonparametric dispersion function, which takes the form of a step, polynomial, or spline model. The method may be applied using standard regression techniques for fitting generalized linear models. Modifiers of pollutant dispersion such as wind direction, meteorology, and landscape features can also be included. Two examples are given to illustrate the method. The first employs data from a study in which NO(2) (a known pollutant from automobile exhaust) was monitored outside of 138 Connecticut homes, providing a model for estimating NO(2) exposure. In the second example, estimated levels of nitrogen dioxide (NO(2)) from the model, as well as a separate spatial model, were used to analyze traffic-related health effects in a study of 761 infants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182125PMC
http://dx.doi.org/10.1002/sim.3732DOI Listing

Publication Analysis

Top Keywords

health effects
8
generalized linear
8
model
7
integrated exposure
4
exposure modeling
4
modeling model
4
model gis
4
gis glm
4
traffic
4
glm traffic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!