Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.18.001487DOI Listing

Publication Analysis

Top Keywords

nonlinear polarization
4
polarization switching
4
switching half
4
half band
4
band gap
4
gap semiconductors
4
nonlinear
1
switching
1
half
1
band
1

Similar Publications

In this paper the finite-difference time-domain general vector auxiliary differential equation method [Opt. Express14, 8305 (2006)10.1364/OE.

View Article and Find Full Text PDF

We propose and demonstrate, for the first time to the best of our knowledge, an all-polarization-maintaining (all-PM) dual-comb Er-fiber laser based on combined figure-8 and figure-9 architectures. The opposite signs of the non-reciprocal phase shifts required for figure-8 and figure-9 architectures in the shared nonlinear amplifying loop mirror (NALM) are achieved using a single non-reciprocal phase shifter (NRPS) that operates in two orthogonal polarizations. The capability of common mode noise cancellation, environmental stability, long-term reliability, and the tunable range of the repetition rate difference Δ between two combs has been investigated and characterized.

View Article and Find Full Text PDF

We propose and demonstrate an ultra-wide tunable mode-locked all-fiber laser based on nonlinear amplifying loop mirror (NALM) with the output of cylindrical vector beams (CVBs). The tuning range covers from 1029 nm to 1098 nm through the intracavity nonlinear polarization evolution (NPE) filter effect. The switchable CVBs between radially and azimuthally polarized beams with mode purity above 90% are generated by incorporating a broadband few-mode long-period fiber grating (LPFG).

View Article and Find Full Text PDF

The monolithic fabrication of passive, nonlinear, and active functionalities on a single chip is highly desired in the wake of the development and commercialization of integrated photonic platforms. However, the co-integration of diverse functionalities has been challenging as each platform is optimized for specific applications, typically requiring different structures and fabrication flows. In this article, we report on a monolithic and complementary metal-oxide-semiconductor CMOS-compatible hybrid wafer-scale photonics platform that is suitable for linear, nonlinear, and active photonics based on moderate confinement 0.

View Article and Find Full Text PDF

Biological applications using multiphoton microscopy increasingly seek a larger field of view while maintaining sufficient temporal sampling to observe dynamic biological processes. Multiphoton imaging also requires high numerical aperture microscope objectives to realize efficient non-linear excitation and collection of fluorescence. This combination of low-magnification and high-numerical aperture poses a challenge for system design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!