Background: Major depressive disorder (MDD) is associated with coronary heart disease (CHD), but the mechanisms are unclear. The presence of MDD may increase CHD risk by affecting microvascular circulation. It is also plausible that genetic factors influencing MDD may overlap with those for CHD. We sought to examine the relationship between MDD and coronary flow reserve (CFR), the ratio of maximum flow during stress to flow at rest measured in milliliters per minute per gram of tissue.

Methods: We examined 289 male middle-aged twins, including 106 twins (53 twin pairs) discordant for a lifetime history of MDD and 183 control twins (unrelated to any twins in the experimental group) without MDD. To calculate CFR, we used positron emission tomography with nitrogen 13 ((13)N) ammonia to evaluate myocardial blood flow at rest and after adenosine stress. A standard perfusion defect score was also used to assess myocardial ischemia.

Results: There was no difference in myocardial ischemia between twins with and without MDD. Among the dizygotic twin pairs discordant for MDD, the CFR was 14% lower in the twins with MDD than in their brothers without MDD (2.36 vs 2.74) (P = .03). This association was not present in the monozygotic discordant pairs who were genetically matched (2.86 vs 2.64) (P = .19). The zygosity-MDD interaction after adjustment was significant (P = .006). The CFR in the dizygotic twins with MDD was also lower than in the control twins.

Conclusions: Our results provide evidence for a shared genetic pathway between MDD and microvascular dysfunction. Common pathophysiologic processes may link MDD and early atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899479PMC
http://dx.doi.org/10.1001/archinternmed.2009.330DOI Listing

Publication Analysis

Top Keywords

mdd
13
twins mdd
12
coronary flow
8
flow reserve
8
positron emission
8
emission tomography
8
flow rest
8
twin pairs
8
pairs discordant
8
twins
7

Similar Publications

Alterations in the kynurenine pathway, and in particular the balance of neuroprotective and neurotoxic metabolites, have been implicated in the pathophysiology of Major Depressive Disorder (MDD) and antidepressant treatment response. In this study, we examined the relationship between changes in kynurenine pathway activity (Kynurenine/Tryptophan ratio), focusing on the balance of neuroprotective-to neurotoxic metabolites (Kynurenic Acid/Quinolinic Acid and Kynurenic Acid/3-Hydroxykynurenine ratios), and response to 8 weeks of selective serotonin reuptake inhibitor (SSRI) treatment, including early changes four weeks after SSRI initiation. Additionally, we examined relationships between kynurenine metabolite ratios and three promising biomarkers of depression and antidepressant response: amygdala/hippocampal volume, and glutamate metabolites in the anterior cingulate cortex.

View Article and Find Full Text PDF

Background: A considerable proportion (21%) of patients with common variable immunodeficiency (CVID) suffers from depression. These subjects are characterized by reduced naïve T cells and a premature T cell senescence similar to that of patients with major depressive disorder (MDD). It is known that T cells are essential for limbic system development/function.

View Article and Find Full Text PDF

Autonomy support (AS) and psychological control (PC) are important parenting behaviors in adolescence, with low AS and high PC relating to adolescent depression. Studies on observed levels of AS and PC in a clinical sample are lacking. The current study aimed to (1) develop a reliable coding system for parental AS and PC in parent-adolescent interactions and gain insights into its ecological validity in a healthy control (HC) sample, and (2) disentangle observed and adolescent-perceived parenting behaviors in relation to adolescent depression.

View Article and Find Full Text PDF

Influence of Coil Orientation on the TMS-Induced Electric Field within the Clinically Recommended Brain Region for Major Depressive Disorder.

Brain Stimul

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 102206, China. Electronic address:

View Article and Find Full Text PDF

Backgrounds/objective: Deep brain stimulation (DBS) has proved the viability of alleviating depression symptoms by stimulating deep reward-related nuclei. This study aims to investigate the abnormal connectivity profiles among superficial, intermediate, and deep brain regions within the reward circuit in major depressive disorder (MDD) and therefore provides references for identifying potential superficial cortical targets for non-invasive neuromodulation.

Methods: Resting-state functional magnetic resonance imaging data were collected from a cohort of depression patients (N = 52) and demographically matched healthy controls (N = 60).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!