Glutathione S-transferase-micro1, GSTM1, belongs to a superfamily of glutathione S-transferases that metabolizes a broad range of reactive oxygen species and xenobiotics. Across species, genetic variants that result in decreased expression of the Gstm1 gene are associated with increased susceptibility for vascular diseases, including atherosclerosis in humans. We previously identified Gstm1 as a positional candidate in our gene mapping study for susceptibility to renal vascular injury characterized by medial hypertrophy and hyperplasia of the renal vessels. To determine the role of Gstm1 in vascular smooth muscle cells (VSMCs), we isolated VSMCs from mouse aortas. We demonstrate that VSMCs from the susceptible C57BL/6 mice have reduced expression of Gstm1 mRNA and its protein product compared with that of the resistant 129 mice. After serum stimulation, C57BL/6 VSMCs proliferate and migrate at a much faster rate than 129 VSMCs. Furthermore, C57BL/6 VSMCs have higher levels of reactive oxygen species and exhibit exaggerated p38 mitogen-activated protein kinase phosphorylation after exposure to H(2)O(2). To establish causality, we show that knockdown of Gstm1 by small interfering RNA results in increased proliferation of VSMCs in a dose-dependent manner, as well as in increased reactive oxygen species levels and VSMC migration. Moreover, Gstm1 small interfering RNA causes increased p38 mitogen-activated protein kinase phosphorylation and attenuates the antiproliferative effect of Tempol. Our data suggest that Gstm1 is a novel regulator of VSMC proliferation and migration through its role in handling reactive oxygen species. Genetic variants that cause a decremental change in expression of Gstm1 may permit an environment of exaggerated oxidative stress, leading to susceptibility to vascular remodeling and atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783903 | PMC |
http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.139428 | DOI Listing |
Sci Rep
January 2025
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Observing quantum mechanical characteristics in biological processes is a surprising and important discovery. One example, which is gaining more experimental evidence and practical applications, is the effect of weak magnetic fields with extremely low frequencies on cells, especially cancerous ones. In this study, we use a mathematical model of ROS dynamics in cancer cells to show how ROS oscillatory patterns can act as a resonator to amplify the small effects of the magnetic fields on the radical pair dynamics in mitochondrial Complex III.
View Article and Find Full Text PDFSci Rep
January 2025
Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
Acyl-CoA oxidase 1 (ACOX1), a member of the acyl-coenzyme A oxidase family, is considered a crucial regulator whose dysregulation is implicated in the occurrence and progression of various cancers. This study aims to elucidate the impact of ACOX1 in CRC, shedding light on its potential as a therapeutic target. Through analysis of the GEO dataset, it was found that ACOX1 is significantly downregulated in colorectal cancer (CRC), and this lower expression level is associated with a worse prognosis.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October, Egypt.
Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells.
View Article and Find Full Text PDFZhongguo Gu Shang
January 2025
Department of Thoracic Surgery, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan 430050, Hubei, China.
Objective: To investigate the clinical efficacy of thoracoscopic minimally invasive surgery with nickel-titanium shape memory alloy wrap bone plate versus rib periosteal internal fixation in patients with multiple rib fractures (MRF) and flail chest.
Methods: A retrospective analysis was performed on 100 patients with MRF and flail chest treated with thoracoscopic minimally invasive surgery and internal fixation with rib fracture preservation between January 2019 and December 2022, including 54 males and 46 females, aged from 20 to 65 years old, with an average age of (38.0±18.
Zhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Stomatology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China.
To investigate the effect of concentrated growth factor (CGF) on the biological performance of human dental pulp stem cells (hDPSCs) under oxidative stress status induced by hydrogen peroxide (HO). The hDPSCs were isolated by using tissue block separation method from healthy permanent teeth extracted for orthodontic reason. hDPSCs surface markers CD34, CD45, CD90 and CD105 were detected by flow cytometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!