Characterization of the overlapping expression patterns of the zebrafish LIS1 orthologs.

Gene Expr Patterns

Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614, USA.

Published: January 2010

Mutations in the LIS1 (Lissencephaly-1) gene underlie classical lissencephaly. This neurodevelopmental disorder is characterized by a loss of cortical gyri and improper laminar formation of the brain due to impaired neuronal migration. Patients with type 1 lissecephaly present with mental retardation and an increased risk of developing other disorders resulting from abnormal neurodevelopment, such as epilepsy. LIS1 is a dynamic protein implicated in numerous cellular mechanisms important for brain development. We have cloned and characterized the orthologs of LIS1 in the zebrafish. The zebrafish is a well-documented model organism for studies of brain development and offers many advantages including embryonic transparency, the ability to easily manipulate gene expression and also generate transgenic animals which can be used to track single, migrating neurons. In the zebrafish nervous system, the LIS1 orthologs are expressed in overlapping temporal and partially overlapping spatial patterns. While lis1a is primarily expressed in the developing central nervous system and the eye, lis1b is highly expressed in the peripheral nervous system as well as the Rohon-beard neurons. Rohon-beard neurons are the early sensory system of the embryo. We postulate that understanding the functions of Lis1 in the whole embryo will provide better insight into the genetic and neurodevelopmental basis of lissencephaly. This will not only aid in the development of therapeutic interventions for diseases such as lissencephaly but will also contribute to the general understanding of brain development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gep.2009.10.001DOI Listing

Publication Analysis

Top Keywords

brain development
12
nervous system
12
lis1 orthologs
8
rohon-beard neurons
8
lissencephaly will
8
lis1
6
characterization overlapping
4
overlapping expression
4
expression patterns
4
zebrafish
4

Similar Publications

Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder affecting multiple organ systems, with a prevalence of 1:6,760-1:13,520 live births in Germany. On the molecular level, TSC is caused by heterozygous loss-of-function variants in either of the genes TSC1 or TSC2, encoding the Tuberin-Hamartin complex, which acts as a critical upstream suppressor of the mammalian target of rapamycin (mTOR), a key signaling pathway controlling cellular growth and metabolism. Despite the therapeutic success of mTOR inhibition in treating TSC-associated manifestations, studies with mTOR inhibitors in children with TSC above two years of age have failed to demonstrate beneficial effects on disease-related neuropsychological deficits.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that primarily affects the motor neurons in the brain and spinal cord. While the exact cause of ALS is not fully understood, a combination of genetic and environmental factors is believed to contribute to its development. Growth arrest-specific 6 (Gas6), a vitamin K-dependent protein, has been recognized to enhance oligodendrocytes and neurons' survival and is associated with different kinds of (neuro)inflammatory conditions.

View Article and Find Full Text PDF

Electroconvulsive therapy (ECT) is an effective treatment for depression but is often associated with cognitive side effects. In patients, ECT-induced electric field (E-field) strength across brain regions varies significantly due to anatomical differences, which may explain individual differences in cognitive side effects. We examined the relationship between regional E-field strength and change in verbal fluency score (i.

View Article and Find Full Text PDF

Connexin 43 contributes to perioperative neurocognitive disorder by attenuating perineuronal net of hippocampus in aged mice.

Cell Mol Life Sci

January 2025

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative MedicineSchool of Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1239 Sanmen Road, Hongkou District, Shanghai, 200434, China.

Background: Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!