Long-term depression (LTD) in CA1 pyramidal neurons can be induced by activation of either N-methyl-D-aspartate receptors (NMDARs) or metabotropic glutamate receptors (mGluRs), both of which elicit changes in synaptic efficacy through alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) endocytosis. To address the role of the ubiquitin-proteasome system in regulating AMPAR endocytosis during these forms of LTD, we examined the effects of pharmacological inhibitors of proteasomal degradation and protein ubiquitination on endocytosis of glutamate receptor 1 (GluR1) -containing AMPARs in dissociated rat hippocampal cultures as well as LTD of excitatory synaptic responses in acute rat hippocampal slices. Our findings suggest that the contribution of the ubiquitin-proteasome system to NMDAR-induced vs. mGluR-induced AMPAR endocytosis and the consequent LTD differs significantly. NMDAR-induced AMPAR endocytosis and LTD occur independently of proteasome function but appear to depend, at least in part, on ubiquitination. In contrast, mGluR-induced AMPAR endocytosis and LTD are enhanced by inhibition of proteasomal degradation, as well as by the inhibitor of protein ubiquitination. Furthermore, the decay of mGluR-induced membrane depolarization and Erk activation is delayed following inhibition of either ubiquitination or proteasomal degradation. These results suggest that, although NMDAR-dependent LTD may utilize ubiquitin as a signal for AMPAR endocytosis, mGluR-induced signaling and LTD are limited by a feedback mechanism that involves the ubiquitin-proteasome system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766431PMC
http://dx.doi.org/10.1111/j.1460-9568.2009.06950.xDOI Listing

Publication Analysis

Top Keywords

ampar endocytosis
24
ubiquitin-proteasome system
16
proteasomal degradation
12
metabotropic glutamate
8
long-term depression
8
protein ubiquitination
8
rat hippocampal
8
mglur-induced ampar
8
endocytosis
7
ampar
6

Similar Publications

Glutamatergic imbalance, particularly downregulation of -amino-3-hydroxy-5-methyl-4- isoxazole propionic acid receptor (AMPARs) endocytosis, has been addressed as a possible reason for cognitive dysfunctions in Alzheimer's disease (AD). We hypothesized that inhibition of AMPAR endocytosis may ameliorate memory impairment in AD model of rats. To approach this, twenty-four adults male Wistar rats were divided into three groups: saline + saline (control group), A + saline, and A + Tat-GluR23Y (AMPA endocytosis inhibitor).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a multifactorial disease that affects multiple brain systems and circuits. While defined by motor symptoms caused by degeneration of brainstem dopamine neurons, debilitating non-motor abnormalities in fronto-striatal-based cognitive function are common, appear early, and are initially independent of dopamine. Young adult mice expressing the PD-associated G2019S missense mutation in also exhibit deficits in fronto-striatal-based cognitive tasks.

View Article and Find Full Text PDF

Arc (also known as Arg3.1) is an activity-dependent immediate early gene product enriched in neuronal dendrites. Arc plays essential roles in long-term potentiation, long-term depression, and synaptic scaling.

View Article and Find Full Text PDF

Fluorescence lifetime imaging of AMPA receptor endocytosis in living neurons: effects of Aβ and PP1.

Front Mol Neurosci

June 2024

Center for Neural Circuits and Behavior, Department of Neuroscience, School of Medicine, University of California at San Diego, La Jolla, CA, United States.

The relative amount of AMPA receptors expressed at the surface of neurons can be measured using superecliptic pHluorin (SEP) labeling at their N-terminus. However, the high signal variability resulting from protein overexpression in neurons and the low signal observed in intracellular vesicles make quantitative characterization of receptor trafficking difficult. Here, we establish a real-time live-cell assay of AMPAR trafficking based on fluorescence lifetime imaging (FLIM), which allows for simultaneous visualization of both surface and intracellular receptors.

View Article and Find Full Text PDF

ABHD6 drives endocytosis of AMPA receptors to regulate synaptic plasticity and learning flexibility.

Prog Neurobiol

February 2024

School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, Jiangsu, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

Trafficking of α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs), mediated by AMPAR interacting proteins, enabled neurons to maintain tuning capabilities at rest or active state. α/β-Hydrolase domain-containing 6 (ABHD6), an endocannabinoid hydrolase, was an AMPAR auxiliary subunit found to negatively regulate the surface delivery of AMPARs. While ABHD6 was found to prevent AMPAR tetramerization in endoplasmic reticulum, ABHD6 was also reported to localize at postsynaptic site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!