Apoptosis-like events are known to occur in anuclear platelets. Although the mechanisms responsible for these events are still not completely understood, studies suggested that some platelet agonists can activate platelet apoptosis. However, the relative activities of various platelet agonists in inducing apoptosis have not yet been investigated. In the present study we explored this issue, and attempted to identify the correlation between platelet activation and apoptosis. In a platelet aggregation study, there were no significant differences respectively stimulated by arachidonic acid (AA; 100 microM), ADP (20 microM), collagen (10 microg/mL), thrombin (0.1 U/mL), U46619 (10 microM), and A23187 (5 microM). In a subsequent study, we fixed these concentrations of agonists to further compare their relative activities in inducing platelet apoptosis. Our results found that thrombin, U46619, and A23187 possess stronger activities than the other agonists in inducing platelet apoptosis (i.e., phosphatidylserine exposure, mitochondrial membrane potential depolarization, eukaryotic initiation factor (eIF)2alpha, and caspase activation). On the other hand, AA induced no apoptotic events in platelets. Based on this approach, we demonstrated for the first time that thrombin, U46619, and A23187, but not AA, possess stronger activity in inducing platelet apoptosis. In addition, we also found that platelet activation might not necessarily be associated with the occurrence of platelet apoptosis. The in vivo physiological function of the apoptotic machinery in platelets is not yet clearly understood, and needs to be further investigated in the future.

Download full-text PDF

Source
http://dx.doi.org/10.3109/09537100903315704DOI Listing

Publication Analysis

Top Keywords

platelet apoptosis
24
inducing platelet
16
relative activities
12
platelet
11
activities inducing
8
apoptosis
8
platelet agonists
8
agonists inducing
8
platelet activation
8
thrombin u46619
8

Similar Publications

Realgar induces apoptosis by inhibiting glycolysis via regulating STAT3 in myelodysplastic syndrome.

J Ethnopharmacol

January 2025

Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:

Ethnopharmacological Relevance: Myelodysplastic syndrome (MDS) is a hematologic malignancy that presents a unique opportunity for traditional Chinese medicine (TCM) to demonstrate its distinctive value in treatment. Realgar, a component of TCM, has shown notable potential in alleviating clinical symptoms and improving the prognosis of MDS patients. However, the precise mechanisms underlying the treatment of MDS with realgar, particularly its effects on apoptosis-related pathways, remain poorly understood.

View Article and Find Full Text PDF

L. protects cerebral ischemia/reperfusion injury via arachidonic acid/p53-mediated apoptosis axis.

Front Pharmacol

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.

Introduction: Stroke is a debilitating disease and the second leading cause of death worldwide, of which ischemic stroke is the dominant type. L., also known as safflower, has been used to treat cerebrovascular diseases, especially ischemic stroke in many Asian countries.

View Article and Find Full Text PDF

Reactive oxygen species: Orchestrating the delicate dance of platelet life and death.

Redox Biol

January 2025

School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China. Electronic address:

Article Synopsis
  • Platelets play a critical role in blood clotting and the immune response, relying on a balanced relationship between their production and destruction influenced by reactive oxygen species (ROS).
  • Moderate levels of ROS enhance platelet production and function, aiding in processes like collagen binding and thrombus formation, but high levels can lead to platelet apoptosis and increased risk of thrombosis.
  • The review emphasizes the need for further research into specific ROS signaling pathways, which could lead to new therapies for platelet-related disorders by leveraging the beneficial aspects of ROS while managing their harmful effects.
View Article and Find Full Text PDF

Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: unveiling new strategies for cancer prevention.

Front Pharmacol

December 2024

Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.

Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!