A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of thioredoxin reductase 1 by caveolin 1 promotes stress-induced premature senescence. | LitMetric

Inhibition of thioredoxin reductase 1 by caveolin 1 promotes stress-induced premature senescence.

EMBO Rep

Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.

Published: December 2009

Thioredoxin reductase 1 (TrxR1) is an important antioxidant enzyme that controls cellular redox homeostasis. By using a proteomic-based approach, here we identify TrxR1 as a caveolar membrane-resident protein. We show that caveolin 1, the structural protein component of caveolae, is a TrxR1-binding protein by demonstrating that the scaffolding domain of caveolin 1 (amino acids 82-101) binds directly to the caveolin-binding motif (CBM) of TrxR1 (amino acids 454-463). We also show that overexpression of caveolin 1 inhibits TrxR activity, whereas a lack of caveolin 1 activates TrxR, both in vitro and in vivo. Expression of a peptide corresponding to the caveolin 1 scaffolding domain is sufficient to inhibit TrxR activity. A TrxR1 mutant lacking the CBM, which fails to localize to caveolae and bind to caveolin 1, is constitutively active and inhibits oxidative-stress-mediated activation of the p53/p21(Waf1/Cip1) pathway and induction of premature senescence. Finally, we show that caveolin 1 expression inhibits TrxR1-mediated cell transformation. Thus, caveolin 1 links free radicals to activation of the p53/p21(Waf1/Cip1) pathway and induction of cellular senescence by acting as an endogenous inhibitor of TrxR1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799211PMC
http://dx.doi.org/10.1038/embor.2009.215DOI Listing

Publication Analysis

Top Keywords

caveolin
9
thioredoxin reductase
8
premature senescence
8
scaffolding domain
8
amino acids
8
trxr activity
8
activation p53/p21waf1/cip1
8
p53/p21waf1/cip1 pathway
8
pathway induction
8
trxr1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!