Background: Major improvements have been made in the development of novel dressings with hemostatic properties to control heavy bleeding in noncompressible areas. To test the relative efficacy of different formulations in bleeding control, recently manufactured products need to be compared using a severe injury model.
Methods: Ten hemostatic dressings and the standard gauze bandage were tested in anesthetized Yorkshire pigs hemorrhaged by full transection of the femoral vasculature at the level of the groin. Application of these dressings with a 5-minute compression period (at approximately 200 mm Hg) was followed with a subsequent infusion of colloid for a period of 30 minutes. Primary outcomes were survival and amount and incidence of bleeding after dressing application. Vital signs and wound temperature were continuously recorded throughout the 3-hour experimental observation.
Results: These findings indicated that four dressings were effective in improving bleeding control and superior to the standard gauze bandage. This also correlated with increased survival rates. Absorbent property, flexibility, and the hemostatic agent itself were identified as the critical factors in controlling bleeding on a noncompressible transected vascular and tissue injury.
Conclusions: Celox, QuikClot ACS, WoundStat, and X-Sponge ranked superior in terms of low incidence of rebleeding, volume of blood loss, maintenance of mean arterial pressure >40 mm Hg, and survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/TA.0b013e3181b2897f | DOI Listing |
Int J Biol Macromol
January 2025
School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:
Bacterial-infected wounds usually lead to slow wound healing due to increased inflammation, especially wounds infected by drug-resistant bacteria, which is a serious challenge in the biomedical field. Traditional antimicrobial strategies such as antibiotics lead to a significant increase in drug-resistant strains and have limited efficacy. Therefore, there is an urgent need to develop multifunctional dressings with excellent antibacterial activity and promotion of wound healing.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.
Uncontrollable haemorrhage and associated microbial contamination in the battlefield and civilian injuries pose a tremendous threat to healthcare professionals. Such traumatic wounds often necessitate an effective point-of-care solution to prevent the consequent morbidity owing to blood loss or haemorrhage. However, developing superior hemostatic materials with anti-infective properties remains a challenge.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Orthopedic Surgery, First People's Hospital of Foshan, Foshan, Guangdong, 528000, PR China.
Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.
Burns are complex traumatic injuries that lead to severe physical and psychological problems due to the prolonged healing period and resulting physical scars. Owing to their versatility, hydrogels can be loaded with various functional factors, making them promising wound dressings. However, many hydrogel dressings cannot support cell survival for a long time, thereby delaying the process of tissue repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!