Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Granulosa cell tumors (GCTs) of the ovary are rare sex cord stromal tumors. Although generally indolent, GCTs recur, and if not diagnosed and treated in early stages, survival rates are significantly shortened. Very little is known regarding GCT etiology. Because of the low incidence of cases and lack of standard diagnostics, mouse models for granulosa cell tumors are a valuable tool for studying GCTs and provide models for developing diagnostic and treatment strategies. We recently developed a novel mouse model of metastatic granulosa cell tumors by genetic deletion of the bone morphogenetic protein signaling transcription factors (SMADs) in granulosa cells of the ovary. Histological and serum hormone analyses reveal that this mouse model most closely resembles the juvenile form of GCT. We further analyzed samples of human juvenile GCT (JGCT) for expression of anti-Müllerian hormone and activation of two major signaling pathways: TGFbeta/SMAD2/3 and wingless-related mouse mammary tumor virus integration site (Wnt)/beta-catenin. The TGFbeta family is active in mouse Smad1-Smad5 double knockout tumors, and here we show that this pathway, but not the beta-catenin pathway, is activated in samples of human JGCT. These data suggest that the SMAD family, possibly through disruption of SMAD1/5 or activation of SMAD2/3 may contribute to the pathogenesis of JGCT in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819741 | PMC |
http://dx.doi.org/10.1210/en.2009-0644 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!