The detection and parallel characterization of the hybridization event of 21-base, unlabeled DNA oligonucleotides with a monolayer of complementary DNA immobilized on a gold surface by surface plasmon resonance (SPR) is presented. A thiol modification on the probe DNA strand allowed for its attachment to the surface via self-assembly. For the hybridization of full match DNA a detection limit of 20 pM was determined. The change in SPR signal was always larger for the full match compared to the one-mismatch target DNA oligonucleotides when the mismatch was in the middle or at the proximal end of the target DNA. Hybridization conditions (buffer concentration, flow rate, and temperature) did not affect the ability of the sensor to discriminate for single nucleotide mismatches. To our knowledge this is the only work where a comparison on the surface hybridization efficiency is performed between proximal, distal, and middle mismatches and the effect of three hybridization parameters is studied with regard to the detection of single nucleotide mismatches using SPR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2009.09.010DOI Listing

Publication Analysis

Top Keywords

surface plasmon
8
plasmon resonance
8
dna oligonucleotides
8
full match
8
target dna
8
single nucleotide
8
nucleotide mismatches
8
dna
6
surface
5
hybridization
5

Similar Publications

Solution-based affinity assays are used for the selection and characterization of proteins that could be developed into therapeutic molecules. However, these assays have limitations for cell-surface proteins as in most cases their purification requires detergent solubilization and are unlikely to assume conformations in solution that resemble their native states in cell membranes. This report describes a novel electrochemiluminescence-based method, called MSD-CAT, for the affinity analysis of antibodies binding to cell-surface receptors.

View Article and Find Full Text PDF

Uncovering the naturally occurring covalent inhibitors of SARS-CoV-2 M from the Chinese medicine sappanwood and deciphering their synergistic anti-M effects.

J Ethnopharmacol

January 2025

Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014. Electronic address:

Ethnopharmacological Relevance: The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 M effects, but the key constituents responsible for SARS-CoV-2 M inhibition and their anti-M mechanisms have not been uncovered.

View Article and Find Full Text PDF

Surface-Sensitive Waveguide Imaging for In Situ Analysis of Membrane Protein Binding Kinetics.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.

View Article and Find Full Text PDF

Far-Ultraviolet Plexciton Formation in Water-Covered Indium Clusters.

J Phys Chem Lett

January 2025

Department of Nature and Environment, Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan.

In this work, we study the plexciton in the far-ultraviolet region formed between indium nanoclusters and water molecules. The indium clusters are fabricated on graphene under ultrahigh vacuum conditions and show a strong localized surface plasmon polariton (LSP) absorption band at 6-7 eV. Adsorption of water molecules onto the clusters at 115 K induces a band splitting larger than 1 eV, indicating a strong coupling between the LSP and water 4a ← 1b transition.

View Article and Find Full Text PDF

Drug discovery continues to face a staggering 90% failure rate, with many setbacks occurring during late-stage clinical trials. To address this challenge, there is an increasing focus on developing and evaluating new technologies to enhance the "design" and "test" phases of antibody-based drugs (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!