Histidine-aspartic acid phosphotransfer pathways are central components of prokaryotic signal transduction pathways and are also found in many eukaryotes. Tools to study histidine kinases, however, are currently quite limited. In this article, we present a new tool to study histidine-aspartic acid phosphotransfer pathways. We show that many histidine kinases will accept ATPgammaS as a substrate to form a stable thiophosphohistidine even when they do not form stable phosphohistidines using the natural substrate ATP. An antibody that has previously been used to detect thiophosphorylated serine, threonine, and tyrosine residues is shown to recognize thiophosphohistidine and thiophosphoaspartic acid residues. Histidine kinase autothiophosphorylation is regulated by other protein sensor domains in the same way as autophosphorylation, and thiophosphate is transferred to downstream aspartic acid containing response regulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2812668PMC
http://dx.doi.org/10.1016/j.ab.2009.10.009DOI Listing

Publication Analysis

Top Keywords

histidine kinase
8
histidine-aspartic acid
8
acid phosphotransfer
8
phosphotransfer pathways
8
histidine kinases
8
form stable
8
semisynthetic epitope
4
epitope probe
4
histidine
4
probe histidine
4

Similar Publications

Unlabelled: has numerous two-component signaling systems (TCSs), many of which regulate the complex social behaviors of this soil bacterium. A subset of TCSs consists of NtrC-like response regulators (RRs) and their cognate histidine sensor kinases (SKs). We have previously demonstrated that a multi-component, phosphorelay TCS named NmpRSTU plays a role in social motility.

View Article and Find Full Text PDF

Phytochromes are biliprotein photoreceptors found in bacteria, fungi, and plants. The soil bacterium Agrobacterium fabrum has two phytochromes, Agp1 and Agp2, which work together to control DNA transfer to plants and bacterial conjugation. Both phytochromes interact as homodimeric proteins.

View Article and Find Full Text PDF

Background: Starch is the most abundant carbohydrate in maize grains, serving as a primary energy source for both humans and animals, and playing a crucial role in various industrial applications. Increasing the starch content of maize grains is beneficial for improving the grain yield and quality. To gain insight into the genetic basis of starch content in maize kernels, a multiparent population (MPP) was constructed and evaluated for starch content in three different environments.

View Article and Find Full Text PDF

Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.

View Article and Find Full Text PDF

Unlabelled: Bacterial genomic mutations in have been detected in isolated resistant clinical strains, yet their mechanistic effect on the development of antimicrobial resistance remains unclear. The resistance-associated regulatory systems acquire adaptive mutations under stress conditions that may lead to a gain of function effect and contribute to the resistance phenotype. Here, we investigate the effect of a single-point mutation (T331I) in VraS histidine kinase, part of the VraSR two-component system in VraSR senses and responds to environmental stress signals by upregulating gene expression for cell wall synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!