Download full-text PDF

Source
http://dx.doi.org/10.3109/10799899009064672DOI Listing

Publication Analysis

Top Keywords

topological model
4
model nmda-glycine
4
nmda-glycine receptor
4
receptor model
4
topological
1
nmda-glycine
1
receptor
1
model
1

Similar Publications

Recent studies on topological materials are expanding into the nonlinear regime, while the central principle, namely the bulk-edge correspondence, is yet to be elucidated in the strongly nonlinear regime. Here, we reveal that nonlinear topological edge modes can exhibit the transition to spatial chaos by increasing nonlinearity, which can be a universal mechanism of the breakdown of the bulk-edge correspondence. Specifically, we unveil the underlying dynamical system describing the spatial distribution of zero modes and show the emergence of chaos.

View Article and Find Full Text PDF

Quantitative structure-property relationship (QSPR) modeling has emerged as a pivotal tool in the field of medicinal chemistry and drug design, offering a predictive framework for understanding the correlation between chemical structure and physicochemical properties. Topological indices are mathematical descriptors derived from the molecular graphs that capture structural features and connectivity, playing a crucial role in QSPR analysis by quantitatively relating chemical structures to their physicochemical properties and biological activities. Lung cancer is characterized by its aggressive nature and late-stage diagnosis, often limiting treatment options and significantly impacting patient survival rates.

View Article and Find Full Text PDF

Glaucoma is an irreversible, progressive, degenerative eye disorder arising because of increased intraocular pressure, resulting in eventual vision loss if untreated. The QSPR relates, mathematically, by employing various algorithms, a specified property of a molecule that arises either from physical, chemical, or biological phenomena using various aspects of its structure. Here in, a similar application based on topological indices and inferences derived from the structure for the calculation of different drug properties like molar refractivity, refractive index, enthalpy, boiling points, molecular weight, and polarizability is presented.

View Article and Find Full Text PDF

Exact Quantization of Topological Order Parameter in SU(N) Spin Models, N-ality Transformation and Ingappabilities.

Phys Rev Lett

December 2024

RIKEN, Condensed Matter Theory Laboratory, CPR, Wako, Saitama 351-0198, Japan.

We show that the ground-state expectation value of twisting operator is a topological order parameter for U(1)- and Z_{N}-symmetric symmetry-protected topological (SPT) phases in one-dimensional "spin" systems-it is quantized in the thermodynamic limit and can be used to identify different SPT phases and to diagnose phase transitions among them. We prove that this (nonlocal) order parameter must take values in Nth roots of unity, and its value can be changed by a generalized lattice translation acting as an N-ality transformation connecting distinct phases. This result also implies the Lieb-Schultz-Mattis (LSM) ingappability for SU(N) spins if we further impose a general translation symmetry.

View Article and Find Full Text PDF

Integer Topological Defects Reveal Antisymmetric Forces in Active Nematics.

Phys Rev Lett

December 2024

Shanghai Jiao Tong University, School of Physics and Astronomy, Institute of Natural Sciences, Shanghai 200240, China.

Article Synopsis
  • Researchers categorize cell layers as either contractile or extensile active nematics, but recent experiments with neural progenitor cells and +1 topological defects challenge this classification.
  • The study involves a particle-level model and a continuum theory, both of which reveal that cells accumulate at the core of +1 defects, aligning with the main experimental outcome.
  • The cell accumulation is driven by two overlooked antisymmetric active forces, and the findings have implications for understanding other active nematics experiments and existing theories.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!