The free radical theory of aging is currently one of the most popular. In parallel, many studies have demonstrated the association of fibrosis and increased oxidative stress in the pathogenesis of some chronic human diseases, and fibrosis is often characteristic of aging tissues. One of the few interventions that effectively slow aging is calorie restriction and the protection against the age-associated increase of oxidative stress remains one of the foremost hypotheses to explain this action. As an alternative to traditional calorie restriction, another dietary regimen, termed alternate-day fasting, has also been tested, whose antiaging mechanisms have not been explored so much extensively. We thus studied the effects of alternate-day fasting, started at 2 months of age, on oxidative stress and fibrosis in the heart during aging. In the left ventricle of the heart of elderly (aged 24 months) versus young (aged 6 months) male rats we found a significant increase in oxidative stress paralleled by increased fibrosis. In parallel there was a significant increase in inflammatory cytokine levels and in NF-kB DNA binding activity with advancing age. Alternate-day fasting protected against all these age-related phenomena. These data support the hypothesis that this kind of dietary restriction protects against age-related fibrosis, at least in part by reducing inflammation and oxidative damage, and this protection can thus be considered a factor in the prevention of age-related diseases with sclerotic evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2009.10.003 | DOI Listing |
Life Metab
June 2024
Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
Atherosclerosis is the major contributor to cardiovascular mortality worldwide. Alternate day fasting (ADF) has gained growing attention due to its metabolic benefits. However, the effects of ADF on atherosclerotic plaque formation remain inconsistent and controversial in atherosclerotic animal models.
View Article and Find Full Text PDFNutrients
December 2024
Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
Background: Maternal obesity detrimentally affects placental function and fetal development. Both alternate-day fasting (ADF) and time-restricted feeding (TRF) are dietary interventions that can improve metabolic health, yet their comparative effects on placental function and fetal development remain unexplored.
Objectives: This study aims to investigate the effects of ADF and TRF on placental function and fetal development during maternal consumption of a high-fat diet (HFD).
J Nutr Biochem
December 2024
Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany. Electronic address:
Alternative splicing contributes to diversify the cellular protein landscape, but aberrant splicing is implicated in many diseases. To which extent mis-splicing contributes to insulin resistance as the causal defect of type 2 diabetes and whether this can be reversed by lifestyle interventions is largely unknown. Therefore, RNA sequencing data from skeletal muscle and adipose tissue of diabetes-susceptible NZO mice treated with or without intermittent fasting and of healthy C57BL/6J mice subjected to exercise were analyzed for alternative splicing differences using Whippet and rMATS.
View Article and Find Full Text PDFLife Sci
January 2025
Biochemistry Department, Faculty of Pharmacy, Mansoura University, Egypt. Electronic address:
Obesity and its associated intestinal inflammatory responses represent a significant global challenge. (IF) is a dietary intervention demonstrating various health benefits, including weight loss, enhanced metabolic health, and increased longevity. However, its effect on the intestinal inflammation induced by high-fat diet (HFD) is still not fully comprehended.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl Street, Rehovot 7610001, Israel.
Mammals withstand frequent and prolonged fasting periods due to hepatic production of glucose and ketone bodies. Because the fasting response is transcriptionally regulated, we asked whether enhancer dynamics impose a transcriptional program during recurrent fasting and whether this generates effects distinct from a single fasting bout. We found that mice undergoing alternate-day fasting (ADF) respond profoundly differently to a following fasting bout compared to mice first experiencing fasting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!