Lysine acetylation of histones defines the epigenetic status of human embryonic stem cells and orchestrates DNA replication, chromosome condensation, transcription, telomeric silencing, and DNA repair. A detailed mechanistic explanation of these phenomena is impeded by the limited availability of homogeneously acetylated histones. We report a general method for the production of homogeneously and site-specifically acetylated recombinant histones by genetically encoding acetyl-lysine. We reconstitute histone octamers, nucleosomes, and nucleosomal arrays bearing defined acetylated lysine residues. With these designer nucleosomes, we demonstrate that, in contrast to the prevailing dogma, acetylation of H3 K56 does not directly affect the compaction of chromatin and has modest effects on remodeling by SWI/SNF and RSC. Single-molecule FRET experiments reveal that H3 K56 acetylation increases DNA breathing 7-fold. Our results provide a molecular and mechanistic underpinning for cellular phenomena that have been linked with K56 acetylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856916PMC
http://dx.doi.org/10.1016/j.molcel.2009.07.027DOI Listing

Publication Analysis

Top Keywords

k56 acetylation
12
recombinant histones
8
histones defines
8
acetylation
6
method genetically
4
genetically installing
4
installing site-specific
4
site-specific acetylation
4
acetylation recombinant
4
histones
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!