T-bet deficiency decreases susceptibility to experimental myasthenia gravis.

Exp Neurol

Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Road, Phoenix, AZ 85013-4496, USA.

Published: December 2009

T-bet, a tissue-specific transcription factor, controls T helper 1 (Th1) cell differentiation and IFN-production. Given the reciprocal relationship between Th1 and other types of helper T cells, we hypothesized that T-bet impacts multiple helper and regulatory T (Treg) cells, thereby influencing the magnitude of autoimmune disease. We tested this hypothesis in an experimental model of autoimmune myasthenia gravis (EAMG) of mice. Myasthenia gravis (MG) and EAMG are T cell-driven, IgG autoantibody-mediated disorders that destroy muscles by attacking the target antigen acetylcholine receptor (AChR) or other antigens of skeletal muscle at neuromuscular junctions. We show that, compared to wild-type mice, AChR-primed T-bet(-/-) mice are less susceptible to EAMG. This phenotype is associated with a reduction of autoreactive Th1 cells and augmentation of Th2 and Th17 cells as well as an upregulation of Foxp3 expression by T-bet(-/-)CD4(+)CD25(+) Treg cells. Thus, in our model, T-bet not only specifies the Th1 lineage but also has a broad influence on autoreactive Th2, Th17 and Treg cells. These coordinated effects reduce the genesis of pathogenic antibodies and protect against B cell-mediated EAMG.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2009.09.022DOI Listing

Publication Analysis

Top Keywords

myasthenia gravis
12
treg cells
12
gravis eamg
8
th2 th17
8
cells
6
t-bet
4
t-bet deficiency
4
deficiency decreases
4
decreases susceptibility
4
susceptibility experimental
4

Similar Publications

Ignoring Gender-Based Immunometabolic Reprograming, a Risky Business in Immune-Based Precision Medicine.

Front Biosci (Landmark Ed)

January 2025

Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, GA 30310, USA.

Immunology advances have increased our understanding of autoimmune, auto-inflammatory, immunodeficiency, infectious, and other immune-mediated inflammatory diseases (IMIDs). Furthermore, evidence is growing for the immune involvement in aging, metabolic and neurodegenerative diseases, and different cancers. However, further research has indicated sex/gender-based immune differences, which further increase higher incidences of various autoimmune diseases (AIDs), such as systemic lupus erythematosus (SLE), myasthenia gravis, and rheumatoid arthritis (RA) in females.

View Article and Find Full Text PDF

Targeting NF-kappaB-inducing kinase shapes B-cell homeostasis in myasthenia gravis.

J Neuroinflammation

January 2025

Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China.

Background: B cell immune dysregulation plays a critical role in myasthenia gravis (MG). However, targeted B-cell therapy such as rituximab may result in long-term peripheral B cell clearance and allow for the survival of plasma cells, contributing to frequent infections and relapses. Therefore, we aimed to identify potential novel therapeutic targets that preserve part of B cell function while inhibiting antibody-secreting cells (ASCs).

View Article and Find Full Text PDF

Introduction: Eculizumab is a C5 complement inhibitor approved by the FDA for the targeted treatment of four rare diseases, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), generalized myasthenia gravis (gMG), and aquaporin-4 immunoglobulin G-positive optic neuromyelitis optica spectrum disorders (AQP4-IgG+NMOSD). The current study was conducted to assess real-world adverse events (AEs) associated with eculizumab through data mining of the FDA Adverse Event Reporting System (FAERS).

Methods: Disproportionality analyses, including Reporting Ratio Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-Item Gamma Poisson Shrinker (MGPS) algorithms were used to quantify the signals of eculizumab-associated AEs.

View Article and Find Full Text PDF

Background: Anti-NMDA receptor encephalitis is an autoimmune, antibody-mediated inflammatory disease of the brain characterized by the presence of IgG antibodies targeting the excitatory N-methyl-D-aspartate receptor (NMDAR). Previous research has established that the neonatal Fc receptor (FcRn) regulates the transport and circulation of immunoglobulins (IgG). Efgartigimod, an FcRn antagonist, has been shown to enhance patient outcomes by promoting IgG clearance, and it has exhibited substantial clinical efficacy and tolerability in the treatment of myasthenia gravis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!