Gas chromatography-mass spectrometry (GC-MS) is a widely used analytical technique for the identification and quantification of trace chemicals in complex mixtures. When complex samples are analyzed by GC-MS it is common to observe co-elution of two or more components, resulting in an overlap of signal peaks observed in the total ion chromatogram. In such situations manual signal analysis is often the most reliable means for the extraction of pure component signals; however, a systematic manual analysis over a number of samples is both tedious and prone to error. In the past 30 years a number of computational approaches were proposed to assist in the process of the extraction of pure signals from co-eluting GC-MS components. This includes empirical methods, comparison with library spectra, eigenvalue analysis, regression and others. However, to date no approach has been recognized as best, nor accepted as standard. This situation hampers general GC-MS capabilities, and in particular has implications for the development of robust, high-throughput GC-MS analytical protocols required in metabolic profiling and biomarker discovery. Here we first discuss the nature of GC-MS data, and then review some of the approaches proposed for the extraction of pure signals from co-eluting components. We summarize and classify different approaches to this problem, and examine why so many approaches proposed in the past have failed to live up to their full promise. Finally, we give some thoughts on the future developments in this field, and suggest that the progress in general computing capabilities attained in the past two decades has opened new horizons for tackling this important problem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770549 | PMC |
http://dx.doi.org/10.1186/1756-0381-2-6 | DOI Listing |
Many of us in the modern world find ourselves implicated in massive, structural harms and injustices. We emit greenhouse gases, which-along with everyone else's emissions-are warming the planet. We buy products that result from bad labor practices.
View Article and Find Full Text PDFNat Prod Res
December 2024
Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
(Forssk.) is a medicinal succulent plant belonging to the family Apocynaceae. The phytochemical examination of methanolic extract resulted in isolation of three unique new pregnane glycosides, quadrangulosides G-I (), their structures were elucidated utilising 1D, 2D NMR and ESI MS spectral studies.
View Article and Find Full Text PDFChem Soc Rev
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.
View Article and Find Full Text PDFNat Prod Res
December 2024
Phytochemistry Department, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C, Tehran, Iran.
Plant-based nano-insecticides like provide eco-friendly pest control with low resistance risk. This study aimed to evaluate the insecticidal activity of the FeO @Carbon nanoformulation of extract with a carbon shell and pure extract against (eggs and larvae), a significant potato pest in Iran. A modified solvothermal method produced highly water-dispersible magnetite (FeO) particles, with citrate as a stabilising agent.
View Article and Find Full Text PDFWater Environ Res
December 2024
Microsystems Fabrication Laboratory, Indian Institute of Technology Kanpur, Kanpur, UP, India.
In this study, we developed an economical treatment process for highly acidic effluents from steel rolling mills containing toxic heavy metals. Our method involves a pH-dependent approach using mining waste and hydrated lime. The treatment occurs in two steps: First, metal oxides precipitate at pH 3-3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!