Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mitogen-activated protein kinases MEK/ERK pathway regulates fundamental processes in malignant cells and represents an attractive target in the development of new cancer treatments especially for human hepatocarcinoma highly resistant to chemotherapy. Although gene extinction experiments have suggested distinct roles for these proteins, the MEK/ERK cascade remains widely considered as exhibiting an overlap of functions. To investigate the functionality of each kinase in tumorigenesis, we have generated stably knock-down clones for MEK1/2 and ERK1/2 isoforms in the human hepatocellular carcinoma line HuH7. Our results have shown that RNAi strategy allows a specific disruption of the targeted kinases and argued for the critical function of MEK1 in liver tumor growth. Transient and stable extinction experiments demonstrated that MEK1 isoform acts as a major element in the signal transduction by phosphorylating ERK1 and ERK2 after growth factors stimulation, whereas oncogenic level of ERK1/2 phosphorylation appears to be MEK1 and MEK2 dependent in basal condition. In addition, silencing of MEK1 or ERK2 abolished cell proliferation and DNA replication in vitro as well as tumor growth in vivo after injection in rodent. In contrast, targeting MEK2 or ERK1 had no effect on hepatocarcinoma progression. These results strongly corroborate the relevance of targeting the MEK cascade as attested by pharmacologic drugs and support the potential application of RNAi in future development of more effective cancer therapies. Our study emphasizes the importance of the MEK/ERK pathway in human hepatocarcinoma cell growth and argues for a crucial role of MEK1 and ERK2 in this regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.24950 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!