Acute kidney injury (AKI) is a frequent clinical problem with a high mortality rate, generally caused by ischemic insults. Nevertheless, the kidney has a remarkably high capacity to regenerate after ischemic injury. Tubular cells can restore renal function by proliferation and dedifferentiation into a mesenchymal cell-type, but also stem cells residing in bone marrow (BM) have been suggested to contribute. Considerable progress has been made in the development of different techniques to study the role of BM-derived stem cells in renal regeneration after AKI. Trans-differentiation of BM cells to functional tubular epithelium has been demonstrated previously, however, beneficial effects of BM transplantations may have been accelerated by irradiation of mice prior to transplantation and kidney injury. Recent studies support a paracrine or endocrine role of BM-derived cells, in which an improvement of renal function is observed without direct involvement in tubular epithelial engraftment. On the other hand, BM cells have also shown not to improve renal function despite their tubular engraftment. This review gives an overview of the recent progress in studying the role of BM-derived cells as therapeutic strategy in renal tubular repair after acute injury.

Download full-text PDF

Source

Publication Analysis

Top Keywords

kidney injury
12
renal function
12
role bm-derived
12
cells
8
cells renal
8
repair acute
8
acute kidney
8
stem cells
8
bm-derived cells
8
renal
6

Similar Publications

Objectives: To evaluate the predictive ability of furosemide stress test (FST), serum and urine cystatin-C in identifying progressive acute kidney injury (AKI) and the need for kidney replacement therapy (KRT).

Methods: Children aged one month to 18 y admitted in the pediatric intensive care unit (PICU) with Kidney Diseases Improving Global Outcomes (KDIGO) stage-1/2 AKI were enrolled. FST and serum and urine cystatin-C levels were performed and analyzed.

View Article and Find Full Text PDF

Objectives: To investigate the clinical sub-phenotype (SP) of pediatric acute kidney injury (AKI) and their association with clinical outcomes.

Methods: General status and initial values of laboratory markers within 24 hours after admission to the pediatric intensive care unit (PICU) were recorded for children with AKI in the derivation cohort (=650) and the validation cohort (=177). In the derivation cohort, a least absolute shrinkage and selection operator (LASSO) regression analysis was used to identify death-related indicators, and a two-step cluster analysis was employed to obtain the clinical SP of AKI.

View Article and Find Full Text PDF

AKI in ACLF: navigating the complex therapeutic puzzle.

Expert Rev Gastroenterol Hepatol

January 2025

Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi.

Introduction: Acute kidney injury (AKI) in patients with acute-on-chronic liver failure (ACLF) is driven by the severity of systemic inflammation, acute portal hypertension driving circulatory dysfunction, hyperbilirubinemia, and toxicity of bile acids. The spectrum is mostly structural, associated with reduced response to vasoconstrictors. The progression is rapid and need of renal replacement therapy and extracorporeal therapies may be required for the management.

View Article and Find Full Text PDF

Advances in CRISPR-Cas systems for kidney diseases.

Prog Mol Biol Transl Sci

January 2025

Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India. Electronic address:

Recent advances in CRISPR-Cas systems have revolutionised the study and treatment of kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and polycystic kidney disease (PKD). CRISPR-Cas technology offers precise and versatile tools for genetic modification in monogenic kidney disorders such as PKD and Alport syndrome. Recent advances in CRISPR technology have also shown promise in addressing other kidney diseases like AKI, CKD, and DKD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!