This study investigates the toxic effects of sarin on respiratory dynamics following microinstillation inhalation exposure in guinea pigs. Animals are exposed to sarin for 4 minutes, and respiratory functions are monitored at 4 hours and 24 hours by whole-body barometric plethysmography. Data show significant changes in respiratory dynamics and function following sarin exposure. An increase in respiratory frequency is observed at 4 hours post exposure compared with saline controls. Tidal volume and minute volume are also increased in sarin-exposed animals 4 hours after exposure. Peak inspiratory flow increases, whereas peak expiratory flow increases at 4 hours and is erratic following sarin exposure. Animals exposed to sarin show a significant decrease in expiratory time and inspiratory time. End-inspiratory pause is unchanged whereas end-expiratory pause is slightly decreased 24 hours after sarin exposure. These results indicate that inhalation exposure to sarin alters respiratory dynamics and function at 4 hours, with return to normal levels at 24 hours post exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1091581809344879DOI Listing

Publication Analysis

Top Keywords

respiratory dynamics
16
inhalation exposure
12
sarin exposure
12
exposure
9
microinstillation inhalation
8
sarin
8
exposure sarin
8
changes respiratory
8
guinea pigs
8
animals exposed
8

Similar Publications

Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics.

Plant J

January 2025

Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.

Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.

View Article and Find Full Text PDF

Mucus plays an integral role for the barrier function of many epithelial tissues. In the human airways, mucus is constantly secreted to capture inhaled microbes and pollutants and cleared away through concerted ciliary motion. Many important respiratory diseases exhibit altered mucus flowability and impaired clearance, contributing to respiratory distress and increased risk of infections.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is a growing threat to the efficacy of antimicrobials in humans and animals, including those used to control bovine respiratory disease (BRD) in high-risk calves entering western Canadian feedlots. Successful mitigation strategies require an improved understanding of the epidemiology of AMR. Specifically, the relative contributions of antimicrobial use (AMU) and contagious transmission to AMR emergence in animal populations are unknown.

View Article and Find Full Text PDF

Clinical Significance of the Peripheral Blood Neutrophil-to-Lymphocyte Ratio in Predicting Chemotherapy Outcomes for Small Cell Lung Cancer.

Cancer Manag Res

January 2025

Department of Respiratory and Critical Care Medicine, Fuyang People's Hospital, Fuyang, 236000, People's Republic of China.

Objective: This study aims to assess the clinical significance of the peripheral blood neutrophil-to-lymphocyte ratio (NLR) in predicting chemotherapy outcomes for patients with small cell lung cancer (SCLC).

Methods: A cohort of 44 patients diagnosed with SCLC between January 2021 to June 2022 at Fuyang People's Hospital was selected for analysis. All patients in this group received a first-line platinum-based doublet chemotherapy regimen.

View Article and Find Full Text PDF

Intro: Extracorporeal membrane oxygenation (ECMO) is a critical tool in the care of severe cardiorespiratory dysfunction. Simulation training for ECMO has become standard practice. Therefore, Keck Medicine of the University of California (USC) holds simulation-training sessions to reinforce and improve providers knowledge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!