This study was designed to test the hypothesis that a 28-day tail suspension (SUS) could induce hypertrophy and enhanced myogenic and vasoconstrictor reactivity in middle cerebral arteries (MCAs), whereas atrophy and decreased myogenic and vasoconstrictor responses in mesenteric third-order arterioles (MSAs). Also, in addition to the functional enhancement in MCAs, structural changes in both kinds of arteries and functional decrement in MSAs could all be prevented by the intervention of daily 1-h dorsoventral (-G(x)) gravitation by restoring to standing posture. To test this hypothesis, vessel diameters to pressure alterations and nonreceptor- and receptor-mediated agonists were determined using a pressure arteriograph with a procedure to measure in vivo length and decrease hysteresis of vessel segments and longitudinal middlemost sections of vessels fixed at maximally dilated state were examined using electron microscopy and histomorphometry. Functional studies showed that 28-day tail-suspended, head-down tilt (SUS) resulted in enhanced and decreased myogenic tone and vasoconstrictor responses, respectively, in MCAs and MSAs. Histomorphometric data revealed that SUS-induced hypertrophic changes in MCAs characterized by increases in thickness (T) and cross-sectional area (CSA) of the media and the number of vascular smooth-muscle-cell layers (N(CL)), whereas in MSAs, it induced decreases in medial CSA and T and N(CL). Daily 1-h -G(x) over 28 days can fully prevent these differential structural changes in both kinds of small arteries and the functional decrement in MSAs, but not the augmented myogenic tone and increased vasoreactivity in the MCAs. These findings have revealed special features of small resistance arteries during adaptation to microgravity with and without gravity-based countermeasure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00493.2009 | DOI Listing |
Human access to space is expanding rapidly in the commercial environment, with various private companies offering commercial flights to spaceflight participants (SFPs). SFPs are more likely than career astronauts to have medical conditions novel to spaceflight and may not have undergone as rigorous a medical screening process as that used for career astronauts, representing new and unstudied risks in the spaceflight environment. We report participation of a subject with recent median sternotomy for aortic valve replacement and atrial septal defect closure in centrifuge-simulated dynamic phases of orbital and suborbital spaceflight.
View Article and Find Full Text PDFAerosp Med Hum Perform
August 2023
Prior study has indicated that individuals of varied age, medical history, and limited-to-no experience tolerate spaceflight conditions. We sought to expand upon the understanding of layperson response to hypergravity conditions expected in commercial spaceflight by exposing subjects, following minimal training, to centrifuge-simulated, high-fidelity commercial spaceflight profiles. We further explored how these individuals perform in simulated operational activities during and following hypergravity.
View Article and Find Full Text PDFWith increasing engagement of commercial spaceflight participants in spaceflight activities, the evaluation of individuals with medical conditions not previously characterized in the spaceflight environment is of particular interest. Factors such as acceleration forces experienced during launch, reentry, and landing of spacecraft could pose an altered risk profile in some individuals due to known disease. Bleeding diatheses present a unique concern in the spaceflight environment given hypergravity exposure and, particularly, the potential for injury resulting from transient or impact acceleration.
View Article and Find Full Text PDFEntropy (Basel)
May 2022
Astrophysics Research Centre, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
The equation yxx=f(x)y2+g(x)y3 is the charged generalization of the Emden-Fowler equation that is crucial in the study of spherically symmetric shear-free spacetimes. This version arises from the Einstein-Maxwell system for a charged shear-free matter distribution. We integrate this equation and find a new first integral.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
May 2022
SSC RF - Institute of Biomedical Problems of RAS, Khoroshevskoe shosse, 76A, 123007, Moscow, Russia.
The interest in the role of the gravitational factor during landing after long-term space flights (SF) leads to the search for various innovative approaches to assessing the compliance of external changes observed by clinicians. The results of special research methods such as Omics technologies that may reflect physiological responses to the conditions created during landing are of great interest. Our purpose is to compare the blood plasma proteome changes associated with the trauma and endothelial dysfunction processes prior to launch and on the day of landing, as well as the groups of cosmonauts with and without the secondary hemorrhagic purpura.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!