Recent studies have suggested a possible role of insulin dysfunction in the pathogenesis of sporadic Alzheimer's disease (AD). In AD, brain glucose metabolism is impaired, and this impairment appears to precede the pathology and clinical symptoms of the disease. However, the exact contribution of impaired insulin signaling to AD is not known. In this study, by using a nontransgenic rat model of sporadic AD generated by intracerebroventricular administration of streptozotocin, we investigated insulin signaling, glucose transporters, protein O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain. We found impaired insulin signaling, overactivation of glycogen synthase kinase-3beta, decreased levels of major brain glucose transporters, down- regulated protein O-GlcNAcylation, increased phosphorylation of tau and neurofilaments, and decreased microtubule-binding activity of tau in the brains of streptozotocin-treated rats. These results suggest that impaired brain insulin signaling may lead to overactivation of glycogen synthase kinase-3beta and down-regulation of O-GlcNAcylation, which, in turn, facilitate abnormal hyperphosphorylation of tau and neurofilaments and, consequently, neurofibrillary degeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774072PMC
http://dx.doi.org/10.2353/ajpath.2009.090157DOI Listing

Publication Analysis

Top Keywords

insulin signaling
20
tau neurofilaments
16
glucose transporters
12
phosphorylation tau
12
signaling glucose
8
o-glcnacylation phosphorylation
8
neurofilaments brain
8
alzheimer's disease
8
brain glucose
8
impaired insulin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!