Calnexin is a type I integral membrane phosphoprotein resident of the endoplasmic reticulum. Its intraluminal domain has been deduced to function as a lectin chaperone coordinating the timing of folding of newly synthesized N-linked glycoproteins of the secretory pathway. Its C-terminal cytosolic oriented extension has an ERK1 phosphorylation site at Ser(563) affecting calnexin association with the translocon. Here we find an additional function for calnexin phosphorylation at Ser(563) in endoplasmic reticulum quality control. A low dose of the misfolding agent l-azetidine 2-carboxylic acid slows glycoprotein maturation and diminishes the extent and rate of secretion of newly synthesized secretory alpha1-antitrypsin. Under these conditions the phosphorylation of calnexin is enhanced at Ser(563). Inhibition of this phosphorylation by the MEK1 inhibitor PD98059 enhanced the extent and rate of alpha1-antitrypsin secretion comparable with that achieved by inhibiting alpha-mannosidase activity with kifunensine. This is the first report in which the phosphorylation of calnexin is linked to the efficiency of secretion of a cargo glycoprotein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787319PMC
http://dx.doi.org/10.1074/jbc.M109.053165DOI Listing

Publication Analysis

Top Keywords

calnexin phosphorylation
8
secretory pathway
8
endoplasmic reticulum
8
newly synthesized
8
extent rate
8
phosphorylation calnexin
8
calnexin
6
phosphorylation
5
phosphorylation attenuates
4
attenuates release
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!