The numerical computer models that simulate municipal solid waste (MSW) bioreactor landfills have mainly two components--a biodegradation process module and a multi-phase flow module. The biodegradation model describes the chemical and microbiological processes. The models available to date include predefined solid waste biodegradation reactions and participating species. Some of these models allow changing the basic composition of solid waste. In a bioreactor landfill several processes like anaerobic and aerobic solids biodegradation, nitrogen and sulfate related processes, precipitation and dissolution of metals, and adsorption and gasification of various anthropogenic organic compounds occur simultaneously. These processes may involve reactions of several species and the available biochemical models for solid waste biodegradation do not provide users with the flexibility to simulate these processes by choice. This paper presents the development of a generalized biochemical process model BIOKEMOD-3P which can accommodate a large number of species and process reactions. This model is able to simulate bioreactor landfill operation in a completely mixed condition, when coupled with a multi-phase model it will be able to simulate a full-scale bioreactor landfill. This generalized biochemical model can simulate laboratory and pilot-scale operations in order to determine biochemical parameters important for simulation of full-scale operations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2009.09.009 | DOI Listing |
Waste Manag
January 2025
Energy and Sustainability Department (EES), Federal University of Santa Catarina (UFSC), 88905-120, Araranguá, SC, Brazil. Electronic address:
Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.
View Article and Find Full Text PDFTalanta
January 2025
Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore. Electronic address:
Heavy metals and metalloids are the most common environmental pollutants. Toxicity characteristic leaching procedure (TCLP) is a standard operating procedure that is used to assess heavy metal and metalloid compositions, and evaluate the hazardous nature of waste and waste-derived materials for reuse or disposal, such as determining landfill suitability. However, TCLP and the following detections are time-consuming and require bulky laboratory-based instruments and trained personnel.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000 PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095 PR China; Institutes of Agricultural Science and Technology Development, Yangzhou 225127 Jiangsu, PR China.
In this work, UiO-66-l-cys with enhanced adsorption capacity for Hg(Ⅱ) in water was synthesized through a facile two-step partial ligand replacement strategy. The presence of the functional groups significantly enhanced the capacity of the material for Hg(Ⅱ). According to the Langmuir model, the maximum theoretical adsorption capacity was calculated to be 1321.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Management Information Systems, Faculty of Data Science for Sustainable Growth, Jeju National University, Republic of Korea.
The escalating annual growth rate of electronic waste, commonly referred to as "e-waste," is currently between 3 % and 5 %, indicating a rapidly increasing solid waste stream. In 2019, South Korea generated 15.8 kg of e-waste per capita.
View Article and Find Full Text PDFSci Rep
January 2025
College of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!