Cost and effluent quality controllers design based on the relative gain array for a nutrient removal WWTP.

Water Res

Departament d'Enginyeria Química, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.

Published: December 2009

The main objective of this work was the design of different effluent quality controllers and a cost controller for WWTPs. This study was based on the relative gain array (RGA) analysis applied to an anaerobic/anoxic/aerobic (A(2)/O) configuration of a simulated WWTP, with combined removal of organic matter, nitrogen and phosphorus. The RGA analysis was able to point out the best pairing amongst the input and the output control variables of the plant to design low order and decentralized effluent quality controllers, such as proportional-integral controllers for each variable of interest (ammonium, nitrate and phosphate). In a second step, a cost controller to automatically search for the most economic setpoints of the effluent quality controllers was implemented based on the best decentralized control structure tested. The simulated plant was operated under different control modes that chronologically represent control configurations becoming gradually more complex: (i) in open loop; (ii) with dissolved oxygen (DO) control in the last aerobic reactor only; (iii) with the effluent quality controllers active; (iv) with the effluent quality controllers active and automatically receiving the setpoints from a cost controller. The effluent quality controllers alone and the cost control together with effluent quality controllers could save up to 42,000 Euros/year and 225,000 Euros/year, respectively, when compared to the operating costs of the plant operating with DO control (a reduction of 2.5% and 13% of the operating costs, respectively). The cost controller proved to be a good tool for automating the search of the most profitable setpoints of the effluent quality controllers for a given cost setpoint.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2009.08.011DOI Listing

Publication Analysis

Top Keywords

effluent quality
36
quality controllers
36
cost controller
16
controllers cost
12
controllers
10
quality
9
based relative
8
relative gain
8
gain array
8
effluent
8

Similar Publications

Water Quality Characteristics and Seasonal Changes in Wastewater Treatment in the Southern Hebei Region by Branch.

Toxics

December 2024

Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China.

This study analyzed three years of data (2021-2024) from three wastewater treatment plants (WWTPs), namely D, X, and T, in the main urban area of Handan, a typical city in the southern Hebei region, and investigated the influent characteristics and impact of temperature on these wastewater treatment facilities. With 90% assurance, the overall influent conditions of the three WWTPs in this region were normal. However, Plant T operated more effectively with slightly lower BOD/COD (B/C), organic carbon/total phosphorus (C/TP), and organic carbon/total nitrogen (C/TN) ratios in the influent.

View Article and Find Full Text PDF

Background: Water quality is usually measured using various indicators based on physical, chemical and biological parameters. By using the biological index that is based on the identification of the arthropod families, it is possible to make a logical judgment about the ecosystem condition. The aim of this study was measuring correlation coefficients between qualitative and biological Indices.

View Article and Find Full Text PDF

The consideration of scarcity and overexploitation of freshwater at the organizational level increased interest in the water footprint. The water footprint measures freshwater use for activities, taking into account water consumption and pollution contamination by classifying consumed water into groundwater and surface water (blue water), rainwater (green water), and polluted water (grey water). This study aims to identify a comprehensive water footprint inventory analysis for a denim washing organization and assess the grey water footprint (GWF) based on the effluent concentration of pollution indicators (chemical oxygen demand (COD), suspended solids (SS), ammonium nitrogen (NH4-N), and phenol) measured monthly in 2021.

View Article and Find Full Text PDF

Microbial community structure and water quality performance in local scrubber reclaim system for water reclamation of the semiconductor industry: a case study of a semiconductor plant in Beijing.

Environ Res

January 2025

Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China.

The local scrubber reclaim (LSR) system plays a critical role in water reclamation and in reducing environmental pollution emissions in semiconductor factories. This study monitored the changes in water quality and assessed the key stages of pollutant removal, with a primary focus on evaluating microbial growth and the shifts in microbial community structure and function in the LSR system. The results showed that activated carbon filtration (ACF) effectively removed total organic carbon (TOC) with a removal rate of 59.

View Article and Find Full Text PDF

Urban stormwater pollution poses serious risks to human and environmental health, including trace metals toxicity. To improve the performance of existing highway Vegetated Filter Strips (VFS), which have limited performance for volume reduction and pollutant removal, amendment with a Vegetated Compost Blanket (VCB), a layer of seeded compost, has been proposed. A novel VCB/VFS system was assessed as a Stormwater Control Measure (SCM) via particulate matter and trace metals removal performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!