Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Activation of GPR40 is reported to enhance insulin secretion in the presence of glucose. We determined whether sulfonylureas could replace glucose for GPR40-mediated enhancement of insulin secretion and investigated underlying mechanisms using INS-1E cells. GW9508, a specific agonist of GPR40, significantly enhanced insulin secretion in the presence of high concentrations of glucose. In contrast, sulfonylureas increased insulin secretion in the absence of glucose. In the presence of sulfonylureas, activation of GPR40 significantly enhanced insulin secretion. The L-type calcium channel (LTCC) activator S-(-)-Bay K8644 also concentration-dependently increased insulin secretion in the absence of glucose. In the presence of 10 micromol/L S-(-)-Bay K8644, GW9508 significantly increased insulin secretion. On the other hand, the LTCC blocker nifedipine significantly inhibited insulin secretion mediated by either glucose, glipizide or glucose plus GW9508. Thus, sulfonylureas could replace glucose to support GPR40-mediated enhancement of insulin secretion, whereas blockage of LTCC reduced both glucose and sulfonylurea-mediated insulin secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2009.09.033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!