We examined the role of reactive oxygen species (ROS) in loss of dopaminergic neurons (DNs) from the substantia nigra (SN) in neuroAIDS. The frequency of Parkinson-like symptomatology, and DN loss, in neuroAIDS is often attributed to nonspecific DN fragility to oxidative stress. Cultured DN are more sensitive to ROS than non-dopaminergic neurons (RN): DN underwent apoptosis at far lower H(2)O(2) concentrations than RN. Gene delivery of glutathione peroxidase (GPx1), which detoxifies H(2)O(2), largely protected both neuron types. HIV-1 envelope, gp120, which elicits oxidative stress in neurons, caused apoptosis more readily in DN than in RN. However, unlike apoptosis caused by H(2)O(2), gp120-induced DN apoptosis was specific: DNs were specifically more sensitive than RN to receptor-mediated [Ca(2+)](i) fluxes triggered by gp120. Gp120-induced Ca(2+) signaling in both neuron types was inhibited by GPx1 or Cu/Zn superoxide dismutase (SOD1), implicating superoxide and peroxide in ligand (gp120)-induced signaling upstream of Ca(2+) release from intracellular stores. In vivo, rats given 10 ng of gp120 stereotaxically showed rapid DN loss within the SN, while loss of RN in the SN and caudate-putamen (CP) was slower and required > or =100 ng of gp120. Furthermore, gp120 injected into the CP was transported axonally retrograde to the SN, causing delayed DN loss there. This, too, was prevented by SOD1 or GPx1. DNs are therefore specifically hypersensitive to gp120-induced apoptosis, signaling for which involves ROS intermediates. These findings may help explain why DN loss and Parkinson's-like dysfunction predominate in neuroAIDS and may apply to other neurodegenerative diseases involving the SN.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2009.09.113DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
oxidative stress
8
neuron types
8
gp120-induced apoptosis
8
gp120
6
loss
6
apoptosis
5
dopaminergic neurotoxicity
4
neurotoxicity hiv-1
4

Similar Publications

Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function.

Neoplasia

December 2024

Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.

View Article and Find Full Text PDF

The involvement of Toll-like receptor 2 (TLR2) in leptospirosis is poorly understood. Our systematic review examined its role across in-vitro, in-vivo, ex-vivo, and human studies. Original articles published in English up to January 2024, exploring the role of TLR2 during leptospirosis, were selected from databases including PubMed, Web of Science, Scopus, Trip, and Google Scholar.

View Article and Find Full Text PDF

Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation.

Appl Microbiol Biotechnol

December 2024

Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.

Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system.

View Article and Find Full Text PDF

SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis.

Cardiovasc Toxicol

December 2024

Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus (PEDV) induces enteritis and diarrhea in piglets. Mitochondrial DNA (mtDNA) contributes to virus-induced inflammatory responses; however, the involvement of inflammasomes in PEDV infection responses remains unclear. We investigated the mechanism underlying inflammasome-mediated interleukin (IL)-1β secretion during the PEDV infection of porcine intestinal epithelial (IPEC-J2) cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!