Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2782512PMC
http://dx.doi.org/10.1016/s0828-282x(09)70725-1DOI Listing

Publication Analysis

Top Keywords

whole-heart magnetic
4
magnetic resonance
4
resonance imaging
4
imaging isolated
4
isolated subpulmonary
4
subpulmonary stenosis
4
stenosis associated
4
associated hypertrophic
4
hypertrophic cardiomyopathy
4
whole-heart
1

Similar Publications

This study aims to develop a computerized classification method for significant coronary artery stenosis on whole-heart coronary magnetic resonance angiography (WHCMRA) images using a 3D convolutional neural network (3D-CNN) with attention mechanisms. The dataset included 951 segments from WHCMRA images of 75 patients who underwent both WHCMRA and invasive coronary angiography (ICA). Forty-two segments with significant stenosis (luminal diameter reduction 75%) on ICA were annotated on WHCMRA images by an experienced radiologist, whereas 909 segments without it were annotated at representative sites.

View Article and Find Full Text PDF

Accurate Intramyocardial Hemorrhage Assessment with Fast, Free-running, Cardiac Quantitative Susceptibility Mapping.

Radiol Cardiothorac Imaging

December 2024

From the Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Blvd, Pacific Theatres Bldg, Ste 400, Los Angeles, CA 90048 (Y.H., L.T.H., H.L.L., D.L., H. Han, A.G.C., H.J.Y.); Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Ind (Y.H., X.G., X.Z., G.Y., G.A., S.F.C., K.P.V., B.S., D.P.S., K.Y., R.D.); Departments of Bioengineering (Y.H., X.Z., A.G.C.) and Statistics (H. Ho), University of California Los Angeles, Los Angeles, Calif; Academia Sinica, Institute of Statistical Science, Nankang, Taipei, Taiwan (H. Ho); Department of Surgery, Division of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan (L.T.H.); Department of Medical Imaging, National Cheng Kung University Hospital, Tainan, Taiwan (H.Y.L.); Siemens Medical Solutions USA, Malvern, Pa (X.B., F.H.); and Department of Radiological Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, Calif (A.G.C.).

Purpose To evaluate the performance of a high-dynamic-range quantitative susceptibility mapping (HDR-QSM) cardiac MRI technique to detect intramyocardial hemorrhage (IMH) and quantify iron content using phantom and canine models. Materials and Methods A free-running whole-heart HDR-QSM technique for IMH assessment was developed and evaluated in calibrated iron phantoms and 14 IMH female canine models. IMH detection and iron content quantification performance of this technique was compared with the conventional iron imaging approaches, R2*(1/T2*) maps, using measurements from ex vivo imaging as the reference standard.

View Article and Find Full Text PDF

Purpose: To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time-efficient water-excitation (WE) RF pulses using B-spline interpolation, and to characterize their lipid suppression performance.

Methods: An evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat-water contrast using Bloch equation simulations.

View Article and Find Full Text PDF

Background: Contemporary 0.55T magnetic resonance imaging (MRI) is promising for fetal MRI, due to the larger bore, reduced safety concerns, lower acoustic noise, and improved fast imaging capability. In this work, we explore improved fetal cardiovascular magnetic resonance (CMR) without relying on any synchronizing devices, prospective, or retrospective gating, to determine the feasibility of real-time MRI evaluation of fetal cardiac function as well as cardiac and great vessel anatomies by using spiral balanced steady-state free precession (bSSFP) at 0.

View Article and Find Full Text PDF

Background: Accurate measurements of flow and ventricular volume and function are critical for clinical decision-making in cardiovascular medicine. Cardiac magnetic resonance (CMR) is the current gold standard for ventricular functional evaluation but is relatively expensive and time-consuming, thus limiting the scale of clinical applications. New volumetric acquisition techniques, such as four-dimensional flow (4D-flow) and three-dimensional volumetric cine (3D-cine) MRI, could potentially reduce acquisition time without loss in accuracy; however, this has not been formally tested on a large scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!