Lead optimization using drug metabolism and pharmacokinetics (DMPK) parameters has become one of the primary focuses of research organizations involved in drug discovery in the last decade. Using a combination of rapid in vivo and in vitro DMPK screening procedures on a large array of compounds during the lead optimization process has resulted in development of compounds that have acceptable DMPK properties. In this review, we present a general screening paradigm that is currently being used as part of drug discovery at Schering-Plough and we describe a case study using the Hepatitis C Virus (HCV) protease inhibitor program as an example. By using the DMPK optimization tools, a potent HCV protease inhibitor, SCH 503034, was selected for development as a candidate drug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754917 | PMC |
J Phys Chem B
January 2025
Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Physical vapor deposition is widely used in the fabrication of organic light-emitting diodes and has the potential to adjust the density and orientation through substrate temperature control, which may lead to enhanced electrical performance. However, it is unclear whether this enhanced property is because of the horizontal molecular orientation or the increased density. The effects of the density and orientation on the electrical properties of a potential electron transport material, (3-dibenzo[c,h]acridin-7-yl)phenyl)diphenylphosphine oxide (TPPO-dibenzacridine), were investigated.
View Article and Find Full Text PDFClin Trials
January 2025
Department of Biostatistics, University of Florida, Gainesville, FL, USA.
Introduction: The sequential parallel comparison design has emerged as a valuable tool in clinical trials with high placebo response rates. To further enhance its efficiency and effectiveness, adaptive strategies, such as sample size adjustment and allocation ratio modification can be employed.
Methods: We compared the performance of Jennison and Turnbull's method and the Promising Zone approach for sample size adjustment in a two-phase sequential parallel comparison design study.
Pharmaceutics
January 2025
Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy.
Background/objectives: Water-soluble vitamins, comprising the B-complex vitamins and vitamin C, are essential for normal growth, cellular metabolism, and immune function in pediatric populations. Due to limited storage in the body, these vitamins require consistent intake to prevent deficiencies. Pediatric populations, particularly infants and young children, face a heightened risk of both deficiency and, in rare cases, toxicity due to varying dietary intake and increased developmental needs.
View Article and Find Full Text PDFPharmaceutics
January 2025
College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
Climate change is compelling species to seek refuge at higher elevations and latitudes. While researchers commonly study these migrations using discontinuous elevational transects, this methodology may introduce significant biases into our understanding of species movement. These potential biases could lead to flawed biodiversity conservation policies if left unexamined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!