Bullous pemphigoid (BP) is a subepidermal autoimmune disease characterized by a humoral response to an epidermal basement membrane (BM) component, BP antigen 2 (BPAG2). BP patients have IgG autoantibodies against an immunodominant BPAG2 extracellular domain termed NC16A as well as additional epitopes located both in the intracellular and extracellular domains (ICD and ECD, respectively) of this autoantigen. To study the evolution of humoral responses to BPAG2, sequential serum samples obtained from C57BL/6Ncr mice grafted with otherwise syngeneic skin from transgenic mice expressing human BPAG2 (hBPAG2) in epidermal BM were studied for IgG reactivity to seven ECD and ICD hBPAG2 epitopes. All grafted mice developed specific IgG against hBPAG2 ECD and ICD epitopes. In seven of eight mice, anti-hBPAG2 IgG was initially directed against ECD epitopes; in six mice, humoral responses subsequently targeted additional ECD and ICD BPAG2 epitopes. In contrast to IgG specific for ECD epitopes, IgG against ICD epitopes was present at lower levels, detectable for shorter periods, and non-complement fixing. Interestingly, the appearance of IgG directed against ICD epitopes correlated with the development of graft loss in this experimental model. These studies provide a comprehensive and prospective characterization of the evolution of humoral immune responses to hBPAG2 in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/jid.2009.309 | DOI Listing |
Front Immunol
December 2024
Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.
Background: Despite its proven effectiveness and safety, there are limited real-world data on CoronaVac's immunogenicity in children, especially in lower-income countries, particularly for SARS-CoV-2 variants. We present a real-world study evaluating CoronaVac's immunogenicity in Colombian children stratified by previous exposure to this virus.
Methods: 89 children aged 3-11 years were enrolled (50 Non-Exposed and 39 Exposed).
Arch Virol
January 2025
Division of Veterinary Public Health, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India.
Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis in the Asia-Pacific region. Amplification of JEV in pigs is a potent driver for spillover of the infection to humans, and hence monitoring of virus dynamics in pigs can provide insights into JEV ecology. To study the dynamics of natural JEV infection in a tropical region, two groups of immunologically naïve pigs consisting of six animals per group were kept as sentinels on two different farms in the district of Thanjavur, Tamil Nadu, India.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, 66000, Punjab, Pakistan.
Rocky Mountain Spotted Fever, caused by the gram-negative intracellular bacteria Rickettsia rickettsii, is a serious tick-borne infection with a fatality rate of 20-30%, if not treated. Since it is the most serious rickettsial disease in North America, modified prevention and treatment strategies are of critical importance. In order to find new therapeutic targets and create multiepitope vaccines, this study integrated subtractive proteomics with reverse vaccinology.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia.
Background: Gestational Zika virus (ZIKV) infection is associated with the development of congenital Zika syndrome (CZS), which includes microcephaly and fetal demise. The magnitude and quality of orthoflavivirus-specific humoral immunity have been previously linked to the development of CZS. However, the role of ZIKV NS1-specific humoral immunity in mothers and children with prenatal ZIKV exposure and CZS remains undefined.
View Article and Find Full Text PDFThe emerging of emergent SARS-CoV-2 subvariants has reduced the protective efficacy of COVID-19 vaccines. Therefore, novel COVID-19 vaccines targeting these emergent variants are needed. We designed and prepared CoV072, an mRNA-based vaccine against SARS-CoV-2 Omicron (EG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!