Stress granules are cytoplasmic ribonucleoprotein granules formed following various stresses that inhibit translation. They are thought to help protecting untranslated mRNAs until stress relief. Stress granules are frequently seen adjacent to P-bodies, which are involved in mRNA degradation and storage. We have previously shown in live cells that stress granule assembly often takes place in the vicinity of pre-existing P-bodies, suggesting that these two compartments are structurally related. Here we provide the first ultrastructural characterization of stress granules in eukaryotic cells by electron microscopy. Stress granules resulting from oxidative stress, heat-shock or protein overexpression are loosely organised fibrillo-granular aggregates of a moderate electron density, whereas P-bodies are denser and fibrillar. By in situ hybridization at the electron microscopic level, we show that stress granules are enriched in poly(A)(+) mRNAs, although these represent a minor fraction of the cellular mRNAs. Finally, we show that, despite close contact with P-bodies, both domains remain structurally distinct and do not interdigitate.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.054437DOI Listing

Publication Analysis

Top Keywords

stress granules
24
stress
9
cells stress
8
granules
7
p-bodies
5
unravelling ultrastructure
4
ultrastructure stress
4
granules associated
4
associated p-bodies
4
p-bodies human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!