Schistosomiasis japonica is an endemic, zoonotic disease of major public health importance in China. Control programs combining chemotherapy and snail killing have not been able to block transmission of infection in lakes and marsh regions. Vaccination is needed as a complementary approach to the ongoing control programs. In the present study, we wanted to determine if the efficacies of DNA vaccines encoding the 23-kDa tetraspanin membrane protein (SjC23), triose phosphate isomerase (SjCTPI), and sixfold-repeated genes of the complementarity determining region 3 (CDR3) in the H chain of NP30 could be enhanced by boosting via electroporation in vivo and/or with cocktail protein vaccines. Mice vaccinated with cocktail DNA vaccines showed a significant worm reduction of 32.88% (P < 0.01) and egg reduction of 36.20% (P < 0.01). Vaccine efficacy was enhanced when animals were boosted with cocktail protein vaccines; adult worm and liver egg burdens were reduced 45.35% and 48.54%, respectively. Nearly identical results were obtained in mice boosted by electroporation in vivo, with adult worm and egg burdens reduced by 45.00% and 50.88%, respectively. The addition of a protein vaccine boost to this regimen further elevated efficacy to approximately 60% for adult worm burden and greater than 60% for liver egg reduction. The levels of interleukin-2, gamma interferon, and the ratios of immunoglobulin G2a (IgG2a)/IgG1 clearly showed that cocktail DNA vaccines induced CD4(+) Th1-type responses. Boosting via either electroporation or with recombinant proteins significantly increased associated immune responses over those seen in mice vaccinated solely with DNA vaccines. Thus, schistosome DNA vaccine efficacy was significantly enhanced via boosting by electroporation in vivo and/or cocktail protein vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786390 | PMC |
http://dx.doi.org/10.1128/CVI.00231-09 | DOI Listing |
Background Tuberculosis (TB) remains a major cause of global morbidity and mortality. Efforts to control TB are hampered by the lengthy and cumbersome treatment required to eradicate the infection. Bacterial persistence during exposure to bactericidal antibiotics is at least partially mediated by the bacterial stringent response enzyme, Rel .
View Article and Find Full Text PDFJ R Soc Interface
January 2025
Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK.
COVID-19 vaccine programmes must account for variable immune responses and waning protection. Existing descriptions of antibody responses to COVID-19 vaccination convey limited information about the mechanisms of antibody production and maintenance. We describe antibody dynamics after COVID-19 vaccination with two biologically motivated mathematical models.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Global Tuberculosis Program, William T. Shearer Center for Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.
Background: The BCG vaccine induces trained immunity, an epigenetic-mediated increase in innate immune responsiveness. Therefore, this clinical trial evaluated if BCG-induced trained immunity could decrease coronavirus disease 2019 (COVID-19)-related frequency or severity.
Methods: A double-blind, placebo-controlled clinical trial of healthcare workers randomized participants to vaccination with BCG TICE or placebo (saline).
Front Immunol
January 2025
Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention.
View Article and Find Full Text PDFWorld J Hepatol
January 2025
Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan.
Hepatitis B virus (HBV) infection causes acute and chronic hepatitis, compensated and decompensated cirrhosis, and hepatocellular carcinoma worldwide. The actual status of HBV infection and its treatment in certain regions of Asian and African countries, including Ethiopia, has not been well-documented thus far. Antiviral therapy for HBV infection can prevent the progression of HBV-related liver diseases and decrease the HBV-related symptoms, such as abdominal symptoms, fatigue, systemic symptoms and others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!