Th17-driven immune responses contribute to the pathogenesis of many chronic inflammatory diseases. In this study, we investigated the role of IL-17 signaling in chronic gastric inflammation induced by Helicobacter pylori, a Gram-negative bacterium that persistently colonizes the human stomach. Wild-type C57BL/6 mice and mice lacking IL-17RA (IL-17RA(-/-)) were orogastrically infected with H. pylori. Differences in bacterial colonization density and gastric inflammation were not apparent at 1 mo postinfection, but by 3 mo postinfection, H. pylori colonization density was higher and mononuclear gastric inflammation more severe in infected IL-17RA(-/-) mice than in infected wild-type mice. A striking feature was a marked increase in gastric B cells, plasma cells, and lymphoid follicles, along with enhanced H. pylori-specific serum Ab responses, in infected IL-17RA(-/-) mice. Fewer gastric neutrophils and lower levels of neutrophil-recruiting chemokines were detected in infected IL-17RA(-/-) mice than in infected wild-type mice. Gastric IL-17a and IL-21 transcript levels were significantly higher in infected IL-17RA(-/-) mice than in infected wild-type mice or uninfected mice, which suggested that a negative feedback loop was impaired in the IL-17RA(-/-) mice. These results underscore an important role of IL-17RA signaling in regulating B cell recruitment. In contrast to many chronic inflammatory diseases in which IL-17RA signaling promotes an inflammatory response, IL-17RA signaling down-regulates the chronic mononuclear inflammation elicited by H. pylori infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834183PMC
http://dx.doi.org/10.4049/jimmunol.0901206DOI Listing

Publication Analysis

Top Keywords

il-17ra-/- mice
20
infected il-17ra-/-
16
gastric inflammation
12
mice infected
12
infected wild-type
12
wild-type mice
12
il-17ra signaling
12
mice
11
cell recruitment
8
chronic inflammatory
8

Similar Publications

RORγt inverse agonists demonstrating a margin between inhibition of IL-17A and thymocyte apoptosis.

PLoS One

January 2025

Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.

Multiple genetic associations suggest a causative relationship between Th17-related genes coding for proteins, such as IL-17A, IL-23 and STAT3, and psoriasis. Further support for this link comes from the findings that neutralizing antibodies directed against IL-17A, IL-17RA and IL-23 are efficacious in diseases like psoriasis, psoriatic arthritis and ankylosing spondylitis. RORγt is a centrally positioned transcription factor driving Th17 polarization and cytokine secretion and modulation of RORγt may thus provide additional benefit to patients.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.

View Article and Find Full Text PDF

Spinal astrocyte-derived interleukin-17A promotes pain hypersensitivity in bone cancer mice.

Acta Pharm Sin B

December 2024

Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.

Spinal microglia and astrocytes are both involved in neuropathic and inflammatory pain, which may display sexual dimorphism. Here, we demonstrate that the sustained activation of spinal astrocytes and astrocyte-derived interleukin (IL)-17A promotes the progression of mouse bone cancer pain without sex differences. Chemogenetic or pharmacological inhibition of spinal astrocytes effectively ameliorates bone cancer-induced pain-like behaviors.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated chrysin's effectiveness as a treatment for memory decline caused by amyloid-beta (Aβ) exposure, a model of Alzheimer's disease in mice.
  • Mice given Aβ through intranasal administration experienced significant memory loss and increased IL-17 signaling, leading to higher expressions of inflammatory markers.
  • However, treatment with chrysin improved memory and reduced inflammation by downregulating IL-17 signaling and restoring redox balance in the brain.
View Article and Find Full Text PDF

Cutaneous Innate Lymphoid Populations Drive IL-17A-Mediated Immunity in Nannizzia gypsea Dermatophytosis.

J Invest Dermatol

December 2024

Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), National Scientific and Technical Research Council (CONICET), Córdoba, Argentina. Electronic address:

Fungal skin infections significantly contribute to the global human disease burden, yet our understanding of cutaneous immunity against dermatophytes remains limited. Previously, we developed a model of epicutaneous infection with Microsporum canis in C57BL/6 mice, which highlighted the critical role of IL-17RA signaling in antidermatophyte defenses. In this study, we expanded our investigation to the human pathogen Nannizzia gypsea and demonstrated that skin γδTCR and CD8/CD4 double-negative βTCR T cells are the principal producers of IL-17A during dermatophytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!