Functional characterization of water deficit stress responsive genes is important to understand their role in stress tolerance. RNAi-based silencing of gene of interest and studying the stress response of knockdown plants under stress can be one of the potential options for assessing functional significance of these genes. Several genes showing higher transcript expression under water deficit stress were cloned earlier from a stress adapted crop species, groundnut. In this study, a few selected gene homologs have been characterized in Nicotiana tabacum and Arabidopsis. Using post transcriptional gene silencing (PTGS) based RNAi approach we developed N. tabacum knockdown lines for three of the genes namely alcohol dehydrogenase (ADH), trans caffeoyl coA-3-O-methyl transferase (CcoAOMT) and flavonol-3-O-glucosyl transferase (F3OGT). By quantitative RT-PCR we demonstrated that the RNAi lines showed significant reduction in target gene transcripts. We followed a stress imposition protocol that allows the plants to experience initial gradual acclimation stress and subsequently severe stress for a definite period. The RNAi knockdown lines generated against ADH and F3OGT, when subjected to water deficit stress showed susceptible symptoms signifying the relevance of these genes under stress. Knockdown of CcoAOMT showed higher chlorophyll degradation and less cell viability upon stress compared to control plants. Further, the Arabidopsis mutant lines clearly showed susceptibility to salinity and water deficit stresses validating relevance of these three genes under abiotic stresses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2009.09.005 | DOI Listing |
J Ethnopharmacol
January 2025
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, 300072 Tianjin, China. Electronic address:
Ethnopharmacological Relevance: Originally formulated to mitigate high-altitude sickness, Xinnaoxin capsules (XNX) are composed of three traditional Chinese medicines (Rhodiola rosea L., Lycium barbarum L. and Hippophae rhamnoides) with properties of anti-hypoxia, anti-fatigue, and anti-aging.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Neurology, Puren Hospital Affliated to Wuhan University of Science and Technology, No. 1, Benxi Street, Wuhan City, 430081, Hubei Province, China.
Sleep deprivation (SD) impairs learning and memory. Investigating the role of epigenetic modifications, such as 5-methylcytosine (mC), in SD is crucial. This study established an SD mouse model and assessed the mRNA levels of mC-related genes in brain tissue to identify potential candidates.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Wuhua District, Kunming, Yunnan, 650101, PR China.
Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.
Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.
Alzheimers Dement
December 2024
Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
Background: Alzheimer's disease (AD) is the most common tauopathy and characterized by the progressive accumulation of Aß and tau. Tau is expressed in two major isoforms containing either 3 or 4 c-terminal repeats labeled as 3R and 4R tau. While these two isoforms occur in roughly equimolar ratios in AD, most research focus and mouse models of tau center only the 4Rtau protein and not 3Rtau.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.
Background: Soluble Aβ oligomers (AβOs) induce synapse dysfunction, leading to cognitive impairment and memory deficits in Alzheimer's disease (AD). Our laboratory and several research groups characterized neurexin family members' physiological roles, pivotal synaptic adhesion molecules for development, plasticity, and maintenance. Beyond their normal functions, we found neurexins binding to AβOs causes AβO-induced neurexin dysregulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!