There is significant need for effective medical adhesives that function reliably on wet tissue surfaces with minimal inflammatory insult. To address these performance characteristics, we have generated a synthetic adhesive biomaterial inspired by the protein glues of marine mussels. In-vivo performance was interrogated in a murine model of extrahepatic syngeneic islet transplantation, as an alternative to standard portal administration. The adhesive precursor polymer consisted of a branched poly(ethylene glycol) (PEG) core, whose endgroups were derivatized with catechol, a functional group abundant in mussel adhesive proteins. Under oxidizing conditions, adhesive hydrogels formed in less than 1 min from catechol-derivatized PEG (cPEG) solutions. Upon implantation, the cPEG adhesive elicited minimal acute or chronic inflammatory response in C57BL6 mice, and maintained an intact interface with supporting tissue for up to one year. In-situ cPEG adhesive formation was shown to efficiently immobilize transplanted islets at the epididymal fat pad and external liver surfaces, permitting normoglycemic recovery and graft revascularization. These findings establish the use of synthetic, biologically-inspired adhesives for islet transplantation at extrahepatic sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783676PMC
http://dx.doi.org/10.1016/j.biomaterials.2009.09.062DOI Listing

Publication Analysis

Top Keywords

islet transplantation
12
cpeg adhesive
8
adhesive
7
biological performance
4
performance mussel-inspired
4
mussel-inspired adhesive
4
adhesive extrahepatic
4
extrahepatic islet
4
transplantation effective
4
effective medical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!