Effects of aging on antioxidant response and phagocytosis in senescent erythrocytes.

Immunol Invest

Laboratorio de Inmunología e Inmunogenética, Departamento de Bioquímica Clínica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.

Published: January 2010

Red blood cell (RBC) aging is a complex process affected by immunological and biochemical parameters. In this work we studied the antioxidant response in RBC of different ages. We also investigated their interaction with peripheral blood monocytes. Anticoagulated blood samples from 19 O RhD+ volunteers' donors were processed. Young (Y) RBC and Senescent (Se) RBC were obtained by self-formed gradients of Percoll. The fractionation of the erythrocytes suspensions was demonstrated by statistically significant density-related changes in hematological determinations. Activities of glucose-6-phosphate dehydrogenase (G6PD), of soluble NADH-cytochrome b5 reductase (b5Rs) and membrane-bound b5R (b5Rm) were determined spectrophotometrically. The interaction between monocytes and different RBC suspensions was evaluated by the erythrophagocytosis assay. The G6PD and b5Rm activities in SeRBC were significantly lower than that observed in YRBC. No differences were found in the b5Rs of both groups. We observed an increased rate of erythrophagocytosis the SeRBC compared to YRBC. The decline in the activities of G6PD and b5Rm would indicate a decrease in the antioxidant response associated to RBC aging. These findings would signify that the oxidative changes of membrane occurring during the life span of the RBC might be relevant in the process of removal of SeRBC from the circulation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08820130902888383DOI Listing

Publication Analysis

Top Keywords

antioxidant response
12
rbc aging
8
g6pd b5rm
8
rbc
7
effects aging
4
aging antioxidant
4
response phagocytosis
4
phagocytosis senescent
4
senescent erythrocytes
4
erythrocytes red
4

Similar Publications

T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.

View Article and Find Full Text PDF

The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.

View Article and Find Full Text PDF

Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.

View Article and Find Full Text PDF

Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.

Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!