Low dose radiotherapy (LD-RT) is known to exert an anti-inflammatory effect. The underlying molecular mechanisms, however, are still a matter of actual research. We have recently shown that LD-RT of stimulated EA.hy.926 endothelial cells (EC) resulted in a biphasic DNA-binding and transcriptional activity of NF-kappaB in parallel with a biphasic course of leukocyte adhesion. Here we report, that following low dose X-irradiation, an increased activator protein 1 (AP-1) DNA-binding activity was observed in EC with a first relative maximum at 0.3 Gy as analysed by electrophoretic mobility shift assay. AP-1 activity then decreased at doses between 0.5 and 1 Gy and subsequently increased again at 3 Gy. This biphasic profile was confirmed on the transcriptional level by an AP-1 specific chemoluminescence reporter assay. In conclusion, the discontinuous dose response of AP-1 activation may add a further facet to the plethora of mechanisms contributing to the anti-inflammatory efficacy of LD-RT.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08916930902831597DOI Listing

Publication Analysis

Top Keywords

low dose
12
activator protein
8
transcriptional activity
8
dose x-irradiation
8
eahy926 endothelial
8
endothelial cells
8
biphasic
4
protein biphasic
4
biphasic induction
4
induction transcriptional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!