Pathological activation of the immune-competent glial cells is an obligatory event in neurodegenerative diseases. The secondary recruitment of astrocytes, resulting from an upgraded microglial activation, represents a critical point. Reactive astrocytes have to give up physiologically important functions (control of extracellular homeostasis and of synaptic transmission) and build a synergistic alliance with microglia in promoting oxidative, excitotoxic and beta-amyloid-induced neuronal damage. Growing understanding of the pathogenically relevant molecular signaling pathways opens new possibilities of pharmacological corrections at the second messenger level. Here, the respective know-how of endogenous modulators, such as adenosine, might be used. The aim should be a titration of the glia reaction in order to maintain supposed beneficial functions of reactive microglia and to prevent the dangerous involvement of astrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200390041DOI Listing

Publication Analysis

Top Keywords

pathological glial
4
glial reactions
4
reactions neurodegenerative
4
neurodegenerative disorders
4
disorders prospects
4
prospects future
4
future therapeutics
4
therapeutics pathological
4
pathological activation
4
activation immune-competent
4

Similar Publications

SIRT4 Protects Retina Against Excitotoxic Injury by Promoting OPA1-Mediated Müller Glial Cell Mitochondrial Fusion and GLAST Expression.

Invest Ophthalmol Vis Sci

January 2025

Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.

Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).

Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.

View Article and Find Full Text PDF

Hydrocortisone Attenuates the Development of Malformations of the Polymicrogyria Spectrum.

Int J Dev Neurosci

February 2025

Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Most of the malformations of the polymicrogyria spectrum are caused by destructive lesions of the neocortex during the third trimester of pregnancy, triggered by hypoxic-ischemic, hemorrhagic or infectious events, with neuroinflammation as a common pathophysiological mechanism. Our study investigated hydrocortisone treatment in attenuating inflammation, malformations development and seizures predisposition in mice subjected to neonatal transcranial freeze lesion. Our results show attenuation of malformation and predisposition to febrile seizures, with concomitant reduction of macrophages/microglia after neonatal freeze lesion, polarizing them towards an anti-inflammatory profile.

View Article and Find Full Text PDF

The ABC transporter A7 modulates neuroinflammation via NLRP3 inflammasome in Alzheimer's disease mice.

Alzheimers Res Ther

January 2025

Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway.

Background: Specific genetic variants in the ATP-binding cassette transporter A7 locus (ABCA7) are associated with an increased risk of Alzheimer's disease (AD). ABCA7 transports lipids from/across cell membranes, regulates Aβ peptide processing and clearance, and modulates microglial and T-cell functions to maintain immune homeostasis in the brain. During AD pathogenesis, neuroinflammation is one of the key mechanisms involved.

View Article and Find Full Text PDF

Characteristics of TSPO expression in marmoset EAE.

J Neuroinflammation

January 2025

Viral Immunology Section, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Building 10, Room 5C103, 10 Center Drive, Bethesda, MD, 20892-1400, USA.

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) and is a leading non-traumatic cause of disability in young adults. The 18 kDa Translocator Protein (TSPO) is a mitochondrial protein and positron emission tomography (PET)-imaging target that is highly expressed in MS brain lesions. It is used as an inflammatory biomarker and has been proposed as a therapeutic target.

View Article and Find Full Text PDF

Delayed radiation-induced brain injury (RIBI) characterized by progressive cognitive decline significantly impacts patient outcomes after radiotherapy. The activation of NLRP3 inflammasome within microglia after brain radiation is involved in the progression of RIBI by mediating inflammatory responses. We have previously shown that sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) mediates microglial NLRP3-related inflammation following global brain ischemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!