In the present work, the treatment of landfill leachate was studied by photo-Fenton process. All photocatalytic experiments were carried out under similar conditions on July or August sunny days between 12 a. m. and 14 p. m. in Chongqing based on the change in solar light intensity with time. The effect of operating conditions such as Fe/H2O2, pH value and Fenton's reagent dosage on color removal and UV254 was investigated. The UV-Vis absorption spectra of 1.00 X 10(3) mg x L(-1) landfill leachate were considered before and after photo-Fenton experiment. The experiment result indicated that photo-Fenton process can effectively remove color. The oxidation of organic materials in the leachate was pH dependent and the optimal pH was 2.5. The favorable Fe2+ to H2O2 molar ratio was 1/95. The optimal conditions in this research were Fe2+ concentration of 5.00 mmol x L(-1) and H2O2 concentration of 5.70 x 10(2) mmol x L(-1). Meanwhile, the analysis of reaction kinesics was carried out in the research. Second-order kinetic was observed for the degradation of landfill leachate, and the rate equation of photo-Fenton process was -dc/dt = -4.34[c]1.92. The result of UV-Vis spectra of landfill leachate showed that photo-Fenton process is an effective method for removal of organic compounds.
Download full-text PDF |
Source |
---|
Sci Total Environ
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, University Drive, Callaghan, NSW 2308, Australia. Electronic address:
Agricultural activities are essential for sustaining the global population, yet they exert considerable pressure on the environment. A major challenge we face today is agricultural pollution, much of which is diffuse in nature, lacking a clear point of origin for chemical discharge. Modern agricultural practices, which often depend on substantial applications of fertilizers, pesticides, and irrigation water, are key contributors to this form of pollution.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Hydroquinone (HQ) and copper ions (Cu) are categorized as environmental pollutants that are severely limited in water. Designing a selective assay for discriminating HQ from its two isomers and the convenient determination of Cu is of great importance. Herein, a Tb-based metal-organic framework (Tb-MOF) and HQ are assembled innovatively into a ratiometric fluorescence nanoprobe to selectively distinguish HQ and subsequent quantitative visual detection of Cu.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.
Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!