An investigation into the phylogenetic variation of plant tolerance and the root and shoot uptake of organic contaminants was undertaken. The aim was to determine if particular families or genera were tolerant of or accumulated organic pollutants. Data were collected from sixty-nine studies. The variation between experiments was accounted for using a residual maximum likelihood analysis to approximate means for individual taxa. A nested ANOVA was subsequently used to determine differences at a number of differing phylogenetic levels. Significant differences were observed at a number of phylogenetic levels for the tolerance to TPH, the root concentration factor and the shoot concentration factor. There was no correlation between the uptake of organic pollutants and that of heavy metals. The data indicate that plant phylogeny is an important influence on both the plant tolerance and uptake of organic pollutants. If this study can be expanded, such information can be used when designing plantings for phytoremediation or risk reduction during the restoration of contaminated sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226510902787286 | DOI Listing |
Small
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
Image-guided photodynamic therapy is acknowledged as one of the most demonstrative therapeutic modalities for cancer treatment because of its high precision, non-invasiveness, and improved imaging ability. A series of purely organic photosensitizers denoted as BTMCz, BTMPTZ, and BTMPXZ, have been designed and synthesized and are found to exhibit both thermally activated delayed fluorescence and aggregation-induced emission simultaneously. Experimental and theoretical studies are combined to reveal that modulation of the donor of the photosensitizer enables distinct thermally activated delayed fluorescence via a second-order spin-orbit perturbation mechanism involving lowest singlet charge-transfer and higher-lying triplet locally excited states, respectively.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
While vegetable uptake of traditional metal contaminants is a well-studied pathway to human exposure and risk, a paucity of information exists on the uptake of emerging metal contaminants. This study evaluated the uptake of the Technology-critical elements (TCEs) gallium (Ga), germanium (Ge), niobium (Nb), tantalum (Ta), thallium (Tl), and rare earth elements (REEs) into lettuce cultivated in 21 European urban soils. For comparison, the uptake of cadmium (Cd) was also analysed.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
Improving the quality of degraded coastal saline-alkali soil and promoting plant growth are key challenges in the restoration of ecological functions in coastal regions. Organic ameliorants such as effective microbial (EM) agent, biochar, and organic compost have been proposed as sustainable solutions, but limited research has explored the combined effects of these amendments. This study investigates five organic improvement strategies: individual applications of EM, corn straw biochar (CSB), and sewage sludge-reed straw compost (COM), along with combined treatments of CSB + EM and COM + EM, on Sesbania growth in a pot experiment.
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
Sulfur hexafluoride (SF), widely used in electric power systems, is one of the most potent greenhouse gases. Efficient separation of SF/N by adsorptive separation technology based on porous materials is of great significance in the industry yet remains a daunting challenge. Herein, a novel strategy is introduced to construct unique pore channels with multiple SF nano-traps by precisely selecting bipyrazole ligands to design the nonpolar surface of microporous metal-organic frameworks (MOFs), which significantly enhances the material's affinity for SF.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, 350108, Fuzhou, CHINA.
Here, we report the facile synthesis of imidazole-linked porous organic cages (IPOCs) via an in-situ cyclization reaction protocol. Specifically, three IPOCs with [2+4] lantern-like structures and one with a [3+6] triangular prism structure were successfully prepared through condensation reactions between tetraformyl-functionalized calix[4]arene and bis(o-phenylenediamine) monomers in a single pot. Notably, these IPOCs exhibit high porosity, with Brunauer-Emmett-Teller (BET) specific surface areas reaching up to 1162 m2 g-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!