Background: Volatile anesthetics impair insulin secretion and glucose utilization; however, the precise mechanism of action that underlies these effects is unknown. The authors hypothesized that isoflurane inhibits glucose-induced inhibition of adenosine triphosphate-sensitive potassium channel activity in pancreatic beta cells, which could result in impaired insulin secretion and glucose tolerance.

Methods: Intravenous glucose tolerance tests were performed on 28 male Japanese White rabbits anesthetized with sodium pentobarbital. Glibenclamide (50 microg/kg + 33.5 microg x kg x h) or vehicle was administered 75 min before intravenous administration of 0.6 g/kg glucose. Half of the animals (n = 7) in the vehicle and glibenclamide groups received isoflurane at 1.0 minimum alveolar concentration 30 min before administration of glucose, and the other half received a vehicle control. Hemodynamics, blood glucose, and plasma insulin were measured. A cell-attached patch clamp configuration was used to record single channel currents in the pancreas from male Swiss-Webster mice.

Results: Isoflurane alone or a combination of isoflurane and glibenclamide inhibited the insulinogenic index to a greater extent than in the vehicle and glibenclamide groups. In the patch clamp experiments, channel activity was significantly decreased as the glucose concentration was increased from 0 to 10 mm. The subsequent application of 0.5 mm isoflurane reversed the effects of glucose on channel activity.

Conclusion: These results show that isoflurane impairs insulin secretion and glucose utilization. The mechanism of action responsible for these effects may involve a decrease in glucose-induced inhibition of adenosine triphosphate-sensitive potassium channel activity in pancreatic beta cells.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0b013e3181bbcb0dDOI Listing

Publication Analysis

Top Keywords

insulin secretion
16
secretion glucose
12
channel activity
12
glucose
10
glucose tolerance
8
glucose utilization
8
mechanism action
8
glucose-induced inhibition
8
inhibition adenosine
8
adenosine triphosphate-sensitive
8

Similar Publications

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

A 37-year-old man presented with symptoms of polyuria and weight loss over the past year. Initial laboratory examination showed elevated blood glucose level (468 mg/dL [25.9 mmol/L]; normal reference range [RR], 75-109 mg/dL [4.

View Article and Find Full Text PDF

Divergent roles of mA in orchestrating brown and white adipocyte transcriptomes and systemic metabolism.

Nat Commun

January 2025

Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.

N-methyladenosine (mA) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that mA methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity.

View Article and Find Full Text PDF

Mesenchymal stem cell conditioned medium improves hypoxic injury to protect islet graft function.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Department of Radiology, Third Xiangya Hospital, Central South University, Changsha 410013, China.

Objectives: Islet transplantation is one of the most promising curative methods for type 1 diabetes mellitus (T1DM), but early hypoxic death of the graft post-transplantation impedes successful treatment. To improve the efficacy of islet transplantation and enhance islet cell resistance to hypoxia, reducing hypoxic injury before revascularization is crucial. Mesenchymal stem cells (MSCs) are known to regulate immune responses and protect against hypoxic damage through paracrine mechanisms.

View Article and Find Full Text PDF

A novel bombesin-related peptide modulates glucose tolerance and insulin secretion in non-obese and hypothalamic-obese rats.

Toxicon

January 2025

Universidade Estadual do Oeste do Paraná, Programa de Pós-Graduação em Biociências e Saúde (PPG-BCS) - Cascavel, Brazil. Electronic address:

This study investigated the effects of a novel bombesin-related peptide (BR-b), derived from the skin of the Chaco tree frog (Boana raniceps), on glucose homeostasis in non-obese and hypothalamic-obese male rats. Hypothalamic obesity was induced in neonatal rats through high-dose administration of monosodium glutamate (MSG; 4 g/kg), while control animals (CTL) received an equimolar saline solution. At 70 days of age, both MSG and CTL groups underwent an oral glucose tolerance test (OGTT; 2 g/kg) with or without prior intraperitoneal administration of BR-b at doses of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!