Step and flash imprint lithography (SFIL) is a promising method recently used for next generation lithographic technology because it is a high-speed process that can be carried out at room temperature and low pressures. Improvements made to SFIL enable the replication of crossbar patterns with a high resolution and the development of suitable materials and techniques to achieve high resolution capability. In this study, SFIL is used to fabricate high-density random access crossbar arrays based on a NiO resistive switching system. The bottom and top electrodes are transferred onto silicon wafers perpendicular to each electrode using the inductively coupled plasma reactive ion etching (ICP-RIE) technique. Direct metal etching without a wet-based process minimizes damage to the electrode surface. The I-V curves of individual active cells (70 x 70 nm(2)) for crossbar arrays reveal the unipolar resistive switching (RS) behaviour of the fabricated device. A high off/on resistance ratio (>10(4)) and reproducible resistance switching characteristics for each active cell were found in different fields and for different wafers. The experimental data indicate that high-density crossbar arrays can be well replicated and that the electrical performance of these arrays is reliable.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/20/44/445305DOI Listing

Publication Analysis

Top Keywords

crossbar arrays
16
random access
8
access crossbar
8
step flash
8
flash imprint
8
imprint lithography
8
high resolution
8
resistive switching
8
crossbar
5
arrays
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!