Mouse sperm-egg binding requires a multiplicity of receptor-ligand interactions, including an oviduct-derived, high molecular weight, wheat germ agglutinin (WGA)-binding glycoprotein that associates with the egg coat at ovulation. Herein, we report the purification and identification of this sperm-binding ligand. WGA-binding, high molecular weight glycoproteins isolated from hormonally primed mouse oviduct lysates competitively inhibit sperm-egg binding in vitro. Within this heterogeneous glycoprotein preparation, a distinct 220 kDa protein selectively binds to sperm surfaces, and was identified by sequence analysis as oviduct-specific glycoprotein (OGP). The sperm-binding activity of OGP was confirmed by the loss of sperm-binding following immunodepletion of OGP from oviduct lysates, and by the ability of both immunoprecipitated OGP and natively purified OGP to competitively inhibit sperm-egg binding. As expected, OGP is expressed by the secretory cells of the fimbriae and infundibulum; however, in contrast to previous reports, OGP is also associated with both the zona pellucida and the perivitelline space of mouse oocytes. Western blot analysis and lectin affinity chromatography demonstrate that whereas the bulk of OGP remains soluble in the ampullar fluid, distinct glycoforms associate with the cumulus matrix, zona pellucida and perivitelline space. The sperm-binding activity of OGP is carbohydrate-dependent and restricted to a relatively minor peanut agglutinin (PNA)-binding glycoform that preferentially associates with the sperm surface, zona pellucida and perivitelline space, relative to other more abundant glycoforms. Finally, pretreatment of two-cell embryos, which do not normally bind sperm, with PNA-binding OGP stimulates sperm binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773190 | PMC |
http://dx.doi.org/10.1242/jcs.058776 | DOI Listing |
Comp Biochem Physiol Part D Genomics Proteomics
January 2025
School of Fisheries, Ludong University, Yantai 264025, China. Electronic address:
Asymmetric development, in which functional differences occur between left-right symmetrical organs, is widespread in organisms, including fish and mollusks. However, the asymmetry of symmetrical sensory structures in Haliotis discus hannai, a gastropod with a sensitive sensory system, remains unknown. This study analyzed the transcriptomes of three sensory structures (eyestalks, cephalic tentacles, and epipodial tentacles) to explore potential asymmetries in this species.
View Article and Find Full Text PDFBiomedicines
December 2024
Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia.
Curr Biol
December 2024
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA. Electronic address:
Theriogenology
January 2025
Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China. Electronic address:
In mammalian reproduction, testis-specific protein IZUMO1 and its receptor JUNO on the oocyte surface are essential for sperm-oocyte recognition, binding, and membrane fusion. However, these factors alone are insufficient to accomplish cytoplasmic membrane fusion. It is believed that other gametic proteins interact with them to facilitate sperm-oocyte interaction on the head and mid-tail of rat spermatozoa as well as on the surface of oocytes.
View Article and Find Full Text PDFCell
December 2024
Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria. Electronic address:
Fertilization, the basis for sexual reproduction, culminates in the binding and fusion of sperm and egg. Although several proteins are known to be crucial for this process in vertebrates, the molecular mechanisms remain poorly understood. Using an AlphaFold-Multimer screen, we identified the protein Tmem81 as part of a conserved trimeric sperm complex with the essential fertilization factors Izumo1 and Spaca6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!