Necrotizing enterocolitis (NEC) remains the most severe gastrointestinal disorder in preterm infants. It is associated with the initiation of enteral nutrition and may be related to immature carbohydrate digestive capacity. We tested the hypothesis that a formula containing maltodextrin vs. a formula containing lactose as the principal source of carbohydrate would predispose preterm pigs to a higher NEC incidence. Cesarean-derived preterm pigs were given total parenteral nutrition for 48 h followed by total enteral nutrition with a lactose-based (n = 11) or maltodextrin-based (n = 11) formula for 36 h. A higher incidence (91% vs. 27%) and severity (score of 3.3 vs. 1.8) of NEC were observed in the maltodextrin than in the lactose group. This higher incidence of NEC in the maltodextrin group was associated with significantly lower activities of lactase, maltase, and aminopeptidase; reduced villus height; transiently reduced in vivo aldohexose uptake; and reduced ex vivo aldohexose uptake capacity in the middle region of the small intestine. Bacterial diversity was low for both diets, but alterations in bacterial composition and luminal concentrations of short-chain fatty acids were observed in the maltodextrin group. In a second study, we quantified net portal absorption of aldohexoses (glucose and galactose) during acute jejunal infusion of a maltodextrin- or a lactose-based formula (n = 8) into preterm pigs. We found lower net portal aldohexose absorption (4% vs. 42%) and greater intestinal recovery of undigested carbohydrate (68% vs. 27%) in pigs acutely perfused with the maltodextrin-based formula than those perfused with the lactose-based formula. The higher digestibility of the lactose than the maltodextrin in the formulas can be attributed to a 5- to 20-fold higher hydrolytic activity of tissue-specific lactase than maltases. We conclude that carbohydrate maldigestion is sufficient to increase the incidence and severity of NEC in preterm pigs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2850085 | PMC |
http://dx.doi.org/10.1152/ajpgi.00261.2009 | DOI Listing |
J Dev Orig Health Dis
January 2025
School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults.
View Article and Find Full Text PDFTransl Psychiatry
November 2024
Department of Physiology, University of Toronto, Toronto, ON, Canada.
Antenatal corticosteroids (ACS) are administered where there is risk of preterm birth to promote fetal lung development and improve perinatal survival. However, treatment may be associated with increased risk of developing neurobehavioural disorders. We have recently identified that ACS results in significant changes to DNA methylation patterns in the newborn and juvenile prefrontal cortex (PFC) of exposed guinea pig offspring.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
Physiol Rep
October 2024
Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.
Dev Psychobiol
November 2024
School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
The postnatal environment is challenging for the preterm neonate with exposure to hypoxic and excitotoxic events, amplified by premature loss of placentally derived neurosteroids. Between preterm birth and term equivalent age (TEA), cerebellar development continues despite these challenges. We hypothesize that neurosteroid replacement therapy during this time will support optimal cerebellar development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!