A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multimodality evaluation of the viability of stem cells delivered into different zones of myocardial infarction. | LitMetric

Background: We tested the hypothesis that multimodality imaging of mouse embryonic stem cells (mESCs) provides accurate assessment of cellular location, viability, and restorative potential after transplantation into different zones of myocardial infarction.

Methods And Results: Mice underwent left anterior descending artery ligation followed by transplantation of dual-labeled mESCs with superparamagnetic iron oxide and luciferase via direct injection into 3 different zones of myocardial infarction: intra-infarction, peri-infarction, and normal (remote). One day after transplantation, magnetic resonance imaging enabled assessment of the precise anatomic locations of mESCs. Bioluminescence imaging allowed longitudinal analysis of cell viability through detection of luciferase activity. Subsequent evaluation of myocardial regeneration and functional restoration was performed by echocardiography and pressure-volume loop analysis. Using 16-segment analysis, we demonstrated precise localization of dual-labeled mESCs. A strong correlation between histology and magnetic resonance imaging was established (r=0.962, P=0.002). Bioluminescent imaging data demonstrated that cell viability in the remote group was significantly higher than in other groups. Echocardiography and pressure-volume loop analysis revealed improved functional restoration in animals treated with mESCs, although myocardial regeneration was not observed.

Conclusions: Multimodality evaluation of mESC engraftment in the heterogeneous tissue of myocardial infarction is possible. Magnetic resonance imaging demonstrated accurate anatomic localization of dual-labeled mESCs. Bioluminescent imaging enabled assessment of variable viability of mESCs transplanted into the infarcted myocardium. Echocardiography and pressure-volume loop analysis validated the restorative potential of mESCs. Although mESCs transplanted into the remote zone demonstrated the highest viability, precise delivery of mESCs into the peri-infarction region might be equally critical in restoring the injured myocardium.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCIMAGING.108.767343DOI Listing

Publication Analysis

Top Keywords

zones myocardial
12
myocardial infarction
12
dual-labeled mescs
12
magnetic resonance
12
resonance imaging
12
echocardiography pressure-volume
12
pressure-volume loop
12
loop analysis
12
mescs
10
multimodality evaluation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!