Sixteen and 24 membered aza-beta(3)-peptidic macrocycles containing a alpha-hydrazinoacid or a beta(3)-aminoacid were synthesized. The conformation of these pseudopeptides was determined by using NH chemical shift analysis, NH extinction, VT-NMR experiments, and X-ray diffraction. The study shows that a stable conformation is retained between 223 and 413 K. The latter is characterized by an uninterrupted internal H-bond network and a syndiotactic arrangement of the asymmetric centers. It means that the presence of the optically pure residue acts as a conformational lock to select a single enantiomer through the cyclization by controlling the absolute configuration of all the nitrogen atoms. To our knowledge, this represents the first example of a dynamic enantioselection process involving several centers prone to pyramidal inversion. These results give a new impulsion to the control of nitrogen chirality, which remained limited to small cycles for 60 years.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja9058074DOI Listing

Publication Analysis

Top Keywords

nitrogen chirality
8
aza-beta3-cyclopeptides controlling
4
controlling nitrogen
4
chirality sixteen
4
sixteen membered
4
membered aza-beta3-peptidic
4
aza-beta3-peptidic macrocycles
4
macrocycles alpha-hydrazinoacid
4
alpha-hydrazinoacid beta3-aminoacid
4
beta3-aminoacid synthesized
4

Similar Publications

Exploring the Chiral Match-Mismatch Effect in the Chiral Discrimination of Nitriles.

Anal Chem

January 2025

Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

This study tackles the challenge of enantiodifferentiation of nitrile compounds, which is typically difficult to resolve using nuclear magnetic resonance (NMR) due to the significant distance between the chiral center and the nitrogen atom involved in molecular interactions. We have developed novel chiral F-labeled probes, each featuring two chiral centers, to exploit the "match-mismatch" effect, thereby enhancing enantiodiscrimination. This strategy effectively differentiates chiral analytes with quaternary chiral carbon centers as well as those with similar substituents at the chiral center.

View Article and Find Full Text PDF

The synthesis, structure, and circularly polarized luminescence (CPL) properties of axially chiral boron difluoride complexes are described. A series of optically pure bis (boron difluoride) complexes were prepared in 5 steps from commercially available (S)- or (R)-BINOL as starting materials. The complexes were found to exhibit similar yellow photoluminescence in solution, regardless of the type of substituents on the nitrogen atoms.

View Article and Find Full Text PDF

A vibrational circular dichroism (VCD) instrument having a thermoelectrically cooled detector (denoted as a TEC unit) was constructed in this study. An electronic device, instead of liquid nitrogen, was employed in the instrument to cool the detector. The feasibility of the system was examined by recording the VCD spectra of liquid pinenes and insect wings.

View Article and Find Full Text PDF

Lewis Acid-Mediated Regioselective Hydrofunctionalization of Styrenes with Isatins and Heterocycles.

J Org Chem

January 2025

School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.

The ligand-free Lewis acid-mediated regioselective hydroamination and hydroarylation of styrenes have been successfully developed in the presence of isatins or heterocyclic aryl compounds such as benzothiophenes and benzofurans. The reactions tolerate a variety of functional groups and afford the corresponding products in moderate to good yields. Deuterium labeling experiments show that the functionalized hydrogen of styrenes was derived from the nitrogen-hydrogen of the substrates in the hydroamination.

View Article and Find Full Text PDF

Small-molecule probes are powerful tools for studying biological systems and can serve as lead compounds for developing new therapeutics. Especially, nitrogen heterocycles are of considerable importance in the pharmaceutical field. These compounds are found in numerous bioactive structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!