The structures and gas-phase acidities (GA) of several CB(11)H(12)H-based carborane acid derivatives (HA) have been calculated with DFT B3LYP method using 6-311+G**, 6-311++G** basis sets. In order to verify the obtained GA values, several systems were also studied at G3(MP2) level of theory. Inserted substituents (CF(3), F, Cl, Br, I, CN, CH(3), etc.) followed the "belts" of the monocarborane cage starting from the boron antipodal to the carbon. In general, the predicted intrinsic gas-phase acidities of the systems varied according to the substituents in the following order of decreasing strength: CF(3) > F > Cl > Br > I > CN > CH(3). Nevertheless, some inconsistencies occurred. F and CN derivatives with lower degree of substitution had weaker intrinsic acidities than the respective Cl derivatives, but the situation was reversed in the case of a larger number of substituents. To obtain better understanding how the substituents influence the basicity of the carborane anion, three hypothetical reaction series were investigated, in which the protonation center was fixed on the boron atom (B(12)), antipodal to the carbon (C(1)), and a single substituent replaced the hydrogens at the vertexes of the three remaining positions (C(1), B(2), and B(7)). The intrinsic gas-phase acidities in these series of neutral carborane-based acids CB(11)X(1)H(11)H are found to clearly depend on the field-inductive and resonance effects of the substituent X. Some influence of the polarizability of X on the reaction center (B(12)) could be detected only in the alpha position (B(7)).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp905449k | DOI Listing |
ACS Omega
January 2025
Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C, Aarhus 8000, Denmark.
Pyruvic acid is an omnipresent compound in nature and is found both in the gas phase and in the particle phase of the atmosphere as well as in aqueous solution in the hydrosphere. Despite much literature on the photochemical degradation and stability of pyruvic acid in different chemical environments, the study of simultaneous interactions between gas-phase pyruvic acid or similar carboxylic acids with water and ions is not well-understood. Here, we present a study of microhydrated molecular clusters containing pyruvic acid and the structurally analogous carboxylic acids lactic acid, propionic acid, and 2,2-dihydroxypropanoic acid by probing geometries, binding free energies, hydrate distributions, as well as their infrared (IR) absorption spectra.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Laboratory of Physicochemical Methods of Analysis, 69 Prospekt Oktyabrya, Ufa 450054, Russian Federation.
The first-stage acid-base equilibrium of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1,3)-dione was studied for the first time in aqueous solutions. Its constant (pK = 9.23 ± 0.
View Article and Find Full Text PDFChem Sci
December 2024
College of Science, Engineering and Environment, University of Newcastle Callaghan NSW 2308 Australia.
The inductive effect is a central concept in chemistry and is often exemplified by the p values of acetic acid derivatives. The reduction in p is canonically attributed to the reduction in the electron density of the carboxylate group through the inductive effect. However, wave functional theory calculations presented herein reveal that the charge density of the carboxylate group is not explained by the inductive effect.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Radical-radical reaction channels are important in the pyrolysis and oxidation chemistry of perfluoroalkyl substances (PFAS). In particular, unimolecular dissociation reactions within unbranched -perfluoroalkyl chains, and their corresponding reverse barrierless association reactions, are expected to be significant contributors to the gas-phase thermal decomposition of families of species such as perfluorinated carboxylic acids and perfluorinated sulfonic acids. Unfortunately, experimental data for these reactions are scarce and uncertain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!